Esempio n. 1
0
def datly():

    # import
    features_train, labels_train, features_test, labels_test = makeTerrainData(
    )

    def plotly(grade_fast, bumpy_fast, grade_slow, bumpy_slow):
        plt.xlim(0.0, 1.0)
        plt.ylim(0.0, 1.0)
        plt.scatter(bumpy_fast, grade_fast, color="b", label="fast")
        plt.scatter(grade_slow, bumpy_slow, color="r", label="slow")
        plt.legend()
        plt.xlabel("bumpiness")
        plt.ylabel("grade")
        plt.show()

    def composite():
        # обучающие данные (features_train, labels_train)
        # имеют как "быстрый", так и " медленный" точки смешиваются
        # вместе-разделите их, чтобы мы могли дать им разные цвета
        # в диаграмме рассеяния и определить их визуально
        grade_fast = [
            features_train[ii][0] for ii in range(0, len(features_train))
            if labels_train[ii] == 0
        ]
        bumpy_fast = [
            features_train[ii][1] for ii in range(0, len(features_train))
            if labels_train[ii] == 0
        ]
        grade_slow = [
            features_train[ii][0] for ii in range(0, len(features_train))
            if labels_train[ii] == 1
        ]
        bumpy_slow = [
            features_train[ii][1] for ii in range(0, len(features_train))
            if labels_train[ii] == 1
        ]

        plt = plotly(grade_fast, bumpy_fast, grade_slow, bumpy_slow)

    return features_train, labels_train, features_test, labels_test, plt
Esempio n. 2
0
from os import path
import sys
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))

from choose_your_own.class_vis import prettyPicture, output_image
from choose_your_own.prep_terrain_data import makeTerrainData

import matplotlib.pyplot as plt
import numpy as np
import pylab as pl

features_train, labels_train, features_test, labels_test = makeTerrainData()

#################################################################################

########################## DECISION TREE #################################

# create/fit the classifier
from sklearn import tree

clf2 = tree.DecisionTreeClassifier(min_samples_split=2)
clf2.fit(features_train, labels_train)
clf50 = tree.DecisionTreeClassifier(min_samples_split=50)
clf50.fit(features_train, labels_train)

# preds
pred2 = clf2.predict(features_test)
pred50 = clf50.predict(features_test)

#prettyPicture(clf, features_test, labels_test)
#plt.show()