Esempio n. 1
0
    def chumpy_compute_error(p1,
                             p2,
                             H,
                             Mcor,
                             error=0,
                             return_sigma=False,
                             sigma_precomputed=None):
        """Compute deviation of p1 and p2 from common epipole, given H.
        """
        # Warp p2 estimates with new homography
        p2_new_denom = H[2, 0] * p2[:, 0] + H[2, 1] * p2[:, 1] + H[2, 2]
        p2_new_x = (H[0, 0] * p2[:, 0] + H[0, 1] * p2[:, 1] +
                    H[0, 2]) / p2_new_denom
        p2_new_y = (H[1, 0] * p2[:, 0] + H[1, 1] * p2[:, 1] +
                    H[1, 2]) / p2_new_denom
        p2_new = ch.vstack((p2_new_x, p2_new_y)).T

        # Compute current best FoE
        u = p2_new[:, 0] - p1[:, 0]
        v = p2_new[:, 1] - p1[:, 1]
        T = ch.vstack((-v, u, v * p1[:, 0] - u * p1[:, 1])).T
        U, S, V = ch.linalg.svd(Mcor.dot(T.T.dot(T)).dot(Mcor))
        qv = Mcor.dot(V[-1, :])
        q = qv[:2] / qv[2]

        d = T.dot(qv)

        # Robust error norm
        if error == 0:
            d = d**2
        elif error == 1:
            sigma = np.median(np.abs(d() - np.median(d())))
            d = ch.sqrt(d**2 + sigma**2)
        elif error == 2:
            # Geman-McClure
            sigma = np.median(np.abs(d() - np.median(d()))) * 1.5
            d = d**2 / (d**2 + sigma)
        elif error == 3:
            # Geman-McClure, corrected
            if sigma_precomputed is not None:
                sigma = sigma_precomputed
            else:
                sigma = 1.426 * np.median(
                    np.abs(d() - np.median(d()))) * np.sqrt(3.0)

            d = d**2 / (d**2 + sigma**2)
            # Correction
            d = d * sigma

        elif error == 4:
            # Inverse exponential norm
            sigma = np.median(np.abs(d() - np.median(d())))
            d = -ch.exp(-d**2 / (2 * sigma**2)) * sigma

        err = d.sum()

        if return_sigma:
            return sigma
        else:
            return err
def pixelLikelihoodRobustRegionCh(image, template, testMask, backgroundModel,
                                  layerPrior, variances):
    sigma = ch.sqrt(variances)
    mask = testMask
    if backgroundModel == 'FULL':
        mask = np.ones(image.shape[0:2])
    # mask = np.repeat(mask[..., np.newaxis], 3, 2)
    repPriors = ch.tile(layerPrior, image.shape[0:2])
    # sum = np.sum(np.log(layerPrior * scipy.stats.norm.pdf(image, location = template, scale=np.sqrt(variances) ) + (1 - repPriors)))
    # uniformProbs = np.ones(image.shape)

    imshape = image.shape
    from opendr.filters import filter_for
    from opendr.filters import GaussianKernel2D

    blur_mtx = filter_for(imshape[0],
                          imshape[1],
                          imshape[2] if len(imshape) > 2 else 1,
                          kernel=GaussianKernel2D(3, 1))
    blurred_image = MatVecMult(blur_mtx, image).reshape(imshape)
    blurred_template = MatVecMult(blur_mtx, template).reshape(imshape)

    probs = ch.exp(-(blurred_image - template)**2 /
                   (2 * variances)) * (1. / (sigma * np.sqrt(2 * np.pi)))
    foregroundProbs = (probs[:, :, 0] * probs[:, :, 1] *
                       probs[:, :, 2]) * layerPrior + (1 - repPriors)
    return foregroundProbs * mask + (1 - mask)
Esempio n. 3
0
def pixelLikelihoodRobustCh(image, template, testMask, backgroundModel, layerPrior, variances):
    sigma = ch.sqrt(variances)
    mask = testMask
    if backgroundModel == 'FULL':
        mask = np.ones(image.shape[0:2])
    # mask = np.repeat(mask[..., np.newaxis], 3, 2)
    repPriors = ch.tile(layerPrior, image.shape[0:2])
    # sum = np.sum(np.log(layerPrior * scipy.stats.norm.pdf(image, location = template, scale=np.sqrt(variances) ) + (1 - repPriors)))
    # uniformProbs = np.ones(image.shape)

    probs = ch.exp( - (image - template)**2 / (2 * variances)) * (1./(sigma * np.sqrt(2 * np.pi)))
    foregroundProbs = (probs[:,:,0] * probs[:,:,1] * probs[:,:,2]) * layerPrior + (1 - repPriors)
    return foregroundProbs * mask + (1-mask)
Esempio n. 4
0
def layerPosteriorsRobustCh(image, template, testMask, backgroundModel, layerPrior, variances):

    sigma = ch.sqrt(variances)
    mask = testMask
    if backgroundModel == 'FULL':
        mask = np.ones(image.shape[0:2])
    # mask = np.repeat(mask[..., np.newaxis], 3, 2)
    repPriors = ch.tile(layerPrior, image.shape[0:2])
    probs = ch.exp( - (image - template)**2 / (2 * variances))  * (1/(sigma * np.sqrt(2 * np.pi)))
    foregroundProbs =  probs[:,:,0] * probs[:,:,1] * probs[:,:,2] * layerPrior
    backgroundProbs = np.ones(image.shape)
    outlierProbs = ch.Ch(1-repPriors)
    lik = pixelLikelihoodRobustCh(image, template, testMask, backgroundModel, layerPrior, variances)
    # prodlik = np.prod(lik, axis=2)
    # return np.prod(foregroundProbs*mask, axis=2)/prodlik, np.prod(outlierProbs*mask, axis=2)/prodlik

    return foregroundProbs*mask/lik, outlierProbs*mask/lik
    def logProb(self):

        fgProb = ch.exp(-(self.renderer - self.groundtruth.r)**2 /
                        (2 * self.variances.r)) * (
                            1. /
                            (np.sqrt(self.variances.r) * np.sqrt(2 * np.pi)))

        h = self.renderer.r.shape[0]
        w = self.renderer.r.shape[1]

        occProb = np.ones([h, w])
        bgProb = np.ones([h, w])

        fgMask = np.array(self.renderer.image_mesh_bool([0])).astype(np.bool)

        errorFun = ch.log(fgMask[:, :, None] * (
            (self.Q[0][:, :, None] * fgProb) +
            (self.Q[1] * occProb + self.Q[2] * bgProb)[:, :, None]) +
                          (1 - fgMask[:, :, None]))

        return errorFun
Esempio n. 6
0
def optimize_on_joints(j2d,
                       model,
                       cam,
                       img,
                       prior,
                       try_both_orient,
                       body_orient,
                       exp_logistic,
                       n_betas=10,
                       inner_penetration=False,
                       silh=None,
                       conf=None,
                       viz=False):
    """Run the optimization."""
    if silh is not None:
        raise NotImplementedError("Silhouette fitting is not supported in "
                                  "this code release due to dependencies on "
                                  "proprietary code for the "
                                  "distance computation.")
    t0 = _time()
    # define the mapping LSP joints -> SMPL joints
    if j2d.shape[0] == 14:
        cids = range(12) + [13]
    elif j2d.shape[0] == 91:
        cids = range(j2d.shape[0])
    else:
        raise Exception("Unknown number of joints: %d! Mapping not defined!" %
                        j2d.shape[0])
    # joint ids for SMPL
    smpl_ids = [8, 5, 2, 1, 4, 7, 21, 19, 17, 16, 18, 20]
    # weight given to each joint during optimization;
    if j2d.shape[0] == 14:
        weights = [1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    else:
        weights = [1] * (len(smpl_ids) + len(landmark_mesh_91))
    # The non-skeleton vertex ids are added later.

    if try_both_orient:
        flipped_orient = _cv2.Rodrigues(body_orient)[0].dot(
            _cv2.Rodrigues(_np.array([0., _np.pi, 0]))[0])
        flipped_orient = _cv2.Rodrigues(flipped_orient)[0].ravel()
        orientations = [body_orient, flipped_orient]
    else:
        orientations = [body_orient]

    if try_both_orient:
        errors = []
    svs = []
    cams = []
    # rends = []
    for o_id, orient in enumerate(orientations):
        # initialize betas
        betas = _ch.zeros(n_betas)  # pylint: disable=no-member

        init_pose = _np.hstack((orient, prior.weights.dot(prior.means)))

        # 2D joint error term
        # make the SMPL joint depend on betas
        Jdirs = _np.dstack([
            model.J_regressor.dot(model.shapedirs[:, :, i])
            for i in range(len(betas))
        ])
        # pylint: disable=no-member
        J_onbetas = _ch.array(Jdirs).dot(betas) + model.J_regressor.dot(
            model.v_template.r)

        # instantiate the model
        sv = verts_decorated(trans=_ch.zeros(3),
                             pose=_ch.array(init_pose),
                             v_template=model.v_template,
                             J=model.J_regressor,
                             betas=betas,
                             shapedirs=model.shapedirs[:, :, :n_betas],
                             weights=model.weights,
                             kintree_table=model.kintree_table,
                             bs_style=model.bs_style,
                             f=model.f,
                             bs_type=model.bs_type,
                             posedirs=model.posedirs)

        # get joint positions as a function of model pose, betas and trans
        (_, A_global) = _global_rigid_transformation(sv.pose,
                                                     J_onbetas,
                                                     model.kintree_table,
                                                     xp=_ch)
        Jtr = _ch.vstack([g[:3, 3] for g in A_global]) + sv.trans

        if j2d.shape[0] == 14:
            # add the "fake" joint for the head
            head_id = _HEAD_REGR[0]
            Jtr = _ch.vstack((Jtr, sv[head_id]))
            if o_id == 0:
                smpl_ids.append(len(Jtr) - 1)
        else:
            # add the plain vertex IDs on the mesh surface.
            for vertex_id in landmark_mesh_91.values():
                Jtr = _ch.vstack((Jtr, sv[vertex_id]))
                # add the joint id
                # for SMPL it's the last one added
                if o_id == 0:
                    smpl_ids.append(len(Jtr) - 1)
        weights = _np.array(weights, dtype=_np.float64)
        if conf is not None:
            weights *= conf[cids]

        # we'll project the joints on the image plane
        cam.v = Jtr

        # data term: difference between observed and estimated joints
        obj_j2d = lambda w, sigma: (w * weights.reshape((-1, 1)) * _GMOf(
            (j2d[cids] - cam[smpl_ids]), sigma))
        # pose prior
        pprior = lambda w: w * prior(sv.pose)  # pylint: disable=cell-var-from-loop
        # joint angles prior
        # 55: left elbow, should bend -np.pi/2
        # 58: right elbow, should bend np.pi/2
        # 12: left knee, should bend np.pi/2
        # 15: right knee, should bend np.pi/2
        if exp_logistic:
            _LOGGER.info('USING LOGISTIC')
            # Skinny Logistic function. as 50-> inf we get a step function at
            # 0.1. (0.1) is a margin bc 0 is still ok.
            my_exp = lambda x: 1 / (1 + _ch.exp(100 * (0.1 + -x)))
        else:
            x_0 = 0  #10
            alpha = 10
            my_exp = lambda x: alpha * _ch.exp((x - x_0))  # pylint: disable=cell-var-from-loop

        obj_angle = lambda w: w * _ch.concatenate([
            my_exp(sv.pose[55]),  # pylint: disable=cell-var-from-loop
            my_exp(-sv.pose[58]),  # pylint: disable=cell-var-from-loop
            my_exp(-sv.pose[12]),  # pylint: disable=cell-var-from-loop
            my_exp(-sv.pose[15])
        ])  # pylint: disable=cell-var-from-loop

        if viz:
            from body.mesh.sphere import Sphere
            from body.mesh.meshviewer import MeshViewer
            import matplotlib.pyplot as plt

            # set up visualization
            # openGL window
            mv = MeshViewer(window_width=120, window_height=120)

            # and ids
            show_ids = _np.array(smpl_ids)[weights > 0]
            vc = _np.ones((len(Jtr), 3))
            vc[show_ids] = [0, 1, 0]

            plt.ion()

            def on_step(_):
                """Create visualization."""
                # show optimized joints in 3D
                # pylint: disable=cell-var-from-loop
                mv.set_dynamic_meshes([_Mesh(v=sv.r, f=[]),
                                       Sphere(center=cam.t.r,
                                              radius=.1).to_mesh()] \
                        + [Sphere(center=jc, radius=.01).to_mesh(vc[ijc])
                           for ijc, jc in enumerate(Jtr.r)])
                plt.figure(1, figsize=(10, 10))
                plt.subplot(1, 2, 1)
                # show optimized joints in 2D
                tmp_img = img.copy()
                for coord, target_coord in zip(
                        _np.around(cam.r[smpl_ids]).astype(int),
                        _np.around(j2d[cids]).astype(int)):
                    if (coord[0] < tmp_img.shape[1] and coord[0] >= 0
                            and coord[1] < tmp_img.shape[0] and coord[1] >= 0):
                        _cv2.circle(tmp_img, tuple(coord), 3, [0, 0, 255])
                    if (target_coord[0] < tmp_img.shape[1]
                            and target_coord[0] >= 0
                            and target_coord[1] < tmp_img.shape[0]
                            and target_coord[1] >= 0):
                        _cv2.circle(tmp_img, tuple(target_coord), 3,
                                    [0, 255, 0])
                plt.imshow(tmp_img)
                plt.draw()
                plt.show()

            on_step(_)
        else:
            on_step = None

        sp = _SphereCollisions(pose=sv.pose,
                               betas=sv.betas,
                               model=model,
                               regs=_REGRESSORS)
        sp.no_hands = True
        # configuration used with conf joints
        opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                          [1e2, 5 * 1e1, 1e1, .5 * 1e1])

        for stage, (w, wbetas) in enumerate(opt_weights):
            _LOGGER.info('stage %01d', stage)
            objs = {}
            #if stage < 2:
            objs['j2d'] = obj_j2d(1., 100)  # TODO: evaluate.

            objs['pose'] = pprior(w)

            # WEIGHT FOR ANGLE
            if exp_logistic:
                # Set to high weight always.
                objs['pose_exp'] = obj_angle(5 * 1e3)
            else:
                objs['pose_exp'] = obj_angle(0.317 * w)

            objs['betas'] = wbetas * betas
            if inner_penetration:
                objs['sph_coll'] = 1e3 * sp
            try:
                _ch.minimize(objs.values(),
                             x0=[sv.betas, sv.pose],
                             method='dogleg',
                             callback=on_step,
                             options={
                                 'maxiter': 100,
                                 'e_3': .0001,
                                 'disp': 0
                             })
            except AssertionError:
                # Divergence detected.
                _LOGGER.warn("Diverging optimization! Breaking!")
                break
        t1 = _time()
        _LOGGER.info('elapsed %.05f', (t1 - t0))
        if try_both_orient:
            errors.append((objs['j2d'].r**2).sum())
        svs.append(sv)
        cams.append(cam)
        # rends.append(rend)
    if try_both_orient and errors[0] > errors[1]:
        choose_id = 1
    else:
        choose_id = 0
    if viz:
        plt.ioff()
    return (svs[choose_id], cams[choose_id].r, cams[choose_id].t.r,
            cams[choose_id].rt.r)
v_teapots, f_list_teapots, vc_teapots, vn_teapots, uv_teapots, haveTextures_list_teapots, textures_list_teapots, vflat, varray, center_teapots = scene_io_utils.loadTeapotsOpenDRData(renderTeapotsList, useBlender, unpackModelsFromBlender, targetModels)

azimuth = np.pi
chCosAz = ch.Ch([np.cos(azimuth)])
chSinAz = ch.Ch([np.sin(azimuth)])

chAz = 2*ch.arctan(chSinAz/(ch.sqrt(chCosAz**2 + chSinAz**2) + chCosAz))
chAz = ch.Ch([np.pi/4])
chObjAz = ch.Ch([np.pi/4])
chAzRel = chAz - chObjAz

elevation = 0
chLogCosEl = ch.Ch(np.log(np.cos(elevation)))
chLogSinEl = ch.Ch(np.log(np.sin(elevation)))
chEl = 2*ch.arctan(ch.exp(chLogSinEl)/(ch.sqrt(ch.exp(chLogCosEl)**2 + ch.exp(chLogSinEl)**2) + ch.exp(chLogCosEl)))
chEl =  ch.Ch([0.95993109])
chDist = ch.Ch([camDistance])

chObjAzGT = ch.Ch([np.pi*3/2])
chAzGT = ch.Ch([np.pi*3/2])
chAzRelGT = chAzGT - chObjAzGT
chElGT = ch.Ch(chEl.r[0])
chDistGT = ch.Ch([camDistance])
chComponentGT = ch.Ch(np.array([2, 0.25, 0.25, 0.12,-0.17,0.36,0.1,0.,0.]))
chComponent = ch.Ch(np.array([2, 0.25, 0.25, 0.12,-0.17,0.36,0.1,0.,0.]))

chPointLightIntensity = ch.Ch([1])
chPointLightIntensityGT = ch.Ch([1])
chLightAz = ch.Ch([0.0])
chLightEl = ch.Ch([np.pi/2])
 def get_objective(self):
     return ch.sum((ch.exp(-((ch.sum(
         (self.sph_v[self.ids0] - self.sph_v[self.ids1])**2, axis=1)) /
                             (self.radiuss)) / 2.))**2)**.5
Esempio n. 9
0
def optimize_on_joints_and_silhouette(j2d,
                                      sil,
                                      model,
                                      cam,
                                      img,
                                      prior,
                                      init_pose,
                                      init_shape,
                                      n_betas=10,
                                      conf=None):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param sil: h x w silhouette with soft boundaries (np.float32, range(-1, 1))
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image
    :param prior: mixture of gaussians pose prior
    :param init_pose: 72D vector, pose prediction results provided by HMR
    :param init_shape: 10D vector, shape prediction results provided by HMR
    :param n_betas: number of shape coefficients considered during optimization
    :param conf: 14D vector storing the confidence values from the CNN
    :returns: a tuple containing the optimized model, its joints projected on image space, the
              camera translation
    """
    # define the mapping LSP joints -> SMPL joints
    cids = range(12) + [13]
    smpl_ids = [8, 5, 2, 1, 4, 7, 21, 19, 17, 16, 18, 20]
    head_id = 411

    # weights assigned to each joint during optimization;
    # the definition of hips in SMPL and LSP is significantly different so set
    # their weights to zero
    base_weights = np.array([1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                            dtype=np.float64)

    betas = ch.array(init_shape)

    # instantiate the model:
    sv = verts_decorated(trans=ch.zeros(3),
                         pose=ch.array(init_pose),
                         v_template=model.v_template,
                         J=model.J_regressor,
                         betas=betas,
                         shapedirs=model.shapedirs[:, :, :n_betas],
                         weights=model.weights,
                         kintree_table=model.kintree_table,
                         bs_style=model.bs_style,
                         f=model.f,
                         bs_type=model.bs_type,
                         posedirs=model.posedirs)

    # make the SMPL joints depend on betas
    Jdirs = np.dstack([
        model.J_regressor.dot(model.shapedirs[:, :, i])
        for i in range(len(betas))
    ])
    J_onbetas = ch.array(Jdirs).dot(betas) + model.J_regressor.dot(
        model.v_template.r)

    # get joint positions as a function of model pose, betas and trans
    (_, A_global) = global_rigid_transformation(sv.pose,
                                                J_onbetas,
                                                model.kintree_table,
                                                xp=ch)
    Jtr = ch.vstack([g[:3, 3] for g in A_global]) + sv.trans

    # add the head joint
    Jtr = ch.vstack((Jtr, sv[head_id]))
    smpl_ids.append(len(Jtr) - 1)

    # update the weights using confidence values
    weights = base_weights * conf[cids] if conf is not None else base_weights

    # project SMPL joints and vertex on the image plane using the estimated camera
    cam.v = ch.vstack([Jtr, sv])

    # obtain a gradient map of the soft silhouette
    grad_x = cv2.Sobel(sil, cv2.CV_32FC1, 1, 0) * 0.125
    grad_y = cv2.Sobel(sil, cv2.CV_32FC1, 0, 1) * 0.125

    # data term #1: distance between observed and estimated joints in 2D
    obj_j2d = lambda w, sigma: (w * weights.reshape((-1, 1)) * GMOf(
        (j2d[cids] - cam[smpl_ids]), sigma))

    # data term #2: distance between the observed and projected boundaries
    obj_s2d = lambda w, sigma, flag, target_pose: (w * flag * GMOf(
        (target_pose - cam[len(Jtr):(len(Jtr) + 6890)]), sigma))

    # mixture of gaussians pose prior
    pprior = lambda w: w * prior(sv.pose)
    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    alpha = 10
    my_exp = lambda x: alpha * ch.exp(x)
    obj_angle = lambda w: w * ch.concatenate([
        my_exp(sv.pose[55]),
        my_exp(-sv.pose[58]),
        my_exp(-sv.pose[12]),
        my_exp(-sv.pose[15])
    ])

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    print('****** Optimization on joints')
    curr_pose = sv.pose.r
    opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                      [1e2, 5 * 1e1, 1e1, .5 * 1e1])
    for stage, (w, wbetas) in enumerate(opt_weights):
        _LOGGER.info('stage %01d', stage)
        objs = {}
        objs['j2d'] = obj_j2d(1., 100)
        objs['pose'] = pprior(w)
        objs['pose_exp'] = obj_angle(0.317 * w)
        objs['betas'] = wbetas * betas
        objs['thetas'] = wbetas * (sv.pose - curr_pose
                                   )  # constrain theta changes

        ch.minimize(objs,
                    x0=[sv.betas, sv.pose],
                    method='dogleg',
                    callback=None,
                    options={
                        'maxiter': 100,
                        'e_3': .001,
                        'disp': 0
                    })
    curr_pose = sv.pose.r
    # cam.v = ch.vstack([Jtr, sv.r])

    # run the optimization in 2 stages, progressively decreasing the
    # weights for the priors
    print('****** Optimization on silhouette and joints')
    opt_weights = zip([57.4, 4.78], [2e2, 1e2])
    for stage, (w, wbetas) in enumerate(opt_weights):
        _LOGGER.info('stage %01d', stage)
        # find the boundary vertices and estimate their expected location
        smpl_vs = cam.r[len(Jtr):, :]
        boundary_flag = np.zeros((smpl_vs.shape[0], 1))
        expected_pos = np.zeros((smpl_vs.shape[0], 2))
        for vi, v in enumerate(smpl_vs):
            r, c = int(v[1]), int(v[0])
            if r < 0 or r >= sil.shape[0] or c < 0 or c >= sil.shape[1]:
                continue
            sil_v = sil[r, c]
            grad = np.array([grad_x[r, c], grad_y[r, c]])
            grad_n = np.linalg.norm(grad)
            if grad_n > 1e-1 and sil_v < 0.4:  # vertex on or out of the boundaries
                boundary_flag[vi] = 1.0
                step = (grad / grad_n) * (sil_v / grad_n)
                expected_pos[vi] = np.array([c - step[0], r - step[1]])

        # run optimization
        objs = {}
        objs['j2d'] = obj_j2d(1., 100)
        objs['s2d'] = obj_s2d(5., 100, boundary_flag, expected_pos)
        objs['pose'] = pprior(w)
        objs['pose_exp'] = obj_angle(0.317 * w)
        objs['betas'] = wbetas * betas  # constrain beta changes
        objs['thetas'] = wbetas * (sv.pose - curr_pose
                                   )  # constrain theta changes
        ch.minimize(objs,
                    x0=[sv.betas, sv.pose],
                    method='dogleg',
                    callback=None,
                    options={
                        'maxiter': 100,
                        'e_3': .001,
                        'disp': 0
                    })

    return sv, cam.r, cam.t.r
Esempio n. 10
0
def optimize_on_joints(j2d,
                       model,
                       cam,
                       img,
                       prior,
                       init_pose,
                       init_shape,
                       n_betas=10,
                       conf=None):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image
    :param prior: mixture of gaussians pose prior
    :param init_pose: 72D vector, pose prediction results provided by HMR
    :param init_shape: 10D vector, shape prediction results provided by HMR
    :param n_betas: number of shape coefficients considered during optimization
    :param conf: 14D vector storing the confidence values from the CNN
    :returns: a tuple containing the optimized model, its joints projected on image space, the
              camera translation
    """
    # define the mapping LSP joints -> SMPL joints
    # cids are joints ids for LSP:
    cids = range(12) + [13]
    # joint ids for SMPL
    # SMPL does not have a joint for head, instead we use a vertex for the head
    # and append it later.
    smpl_ids = [8, 5, 2, 1, 4, 7, 21, 19, 17, 16, 18, 20]

    # the vertex id for the joint corresponding to the head
    head_id = 411

    # weights assigned to each joint during optimization;
    # the definition of hips in SMPL and LSP is significantly different so set
    # their weights to zero
    base_weights = np.array([1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                            dtype=np.float64)

    # initialize the shape to the mean shape in the SMPL training set
    betas = ch.array(init_shape)

    # instantiate the model:
    # verts_decorated allows us to define how many
    # shape coefficients (directions) we want to consider (here, n_betas)
    sv = verts_decorated(trans=ch.zeros(3),
                         pose=ch.array(init_pose),
                         v_template=model.v_template,
                         J=model.J_regressor,
                         betas=betas,
                         shapedirs=model.shapedirs[:, :, :n_betas],
                         weights=model.weights,
                         kintree_table=model.kintree_table,
                         bs_style=model.bs_style,
                         f=model.f,
                         bs_type=model.bs_type,
                         posedirs=model.posedirs)

    # make the SMPL joints depend on betas
    Jdirs = np.dstack([
        model.J_regressor.dot(model.shapedirs[:, :, i])
        for i in range(len(betas))
    ])
    J_onbetas = ch.array(Jdirs).dot(betas) + model.J_regressor.dot(
        model.v_template.r)

    # get joint positions as a function of model pose, betas and trans
    (_, A_global) = global_rigid_transformation(sv.pose,
                                                J_onbetas,
                                                model.kintree_table,
                                                xp=ch)
    Jtr = ch.vstack([g[:3, 3] for g in A_global]) + sv.trans

    # add the head joint, corresponding to a vertex...
    Jtr = ch.vstack((Jtr, sv[head_id]))

    # ... and add the joint id to the list
    smpl_ids.append(len(Jtr) - 1)

    # update the weights using confidence values
    weights = base_weights * conf[cids] if conf is not None else base_weights

    # project SMPL joints on the image plane using the estimated camera
    cam.v = Jtr

    # data term: distance between observed and estimated joints in 2D
    obj_j2d = lambda w, sigma: (w * weights.reshape((-1, 1)) * GMOf(
        (j2d[cids] - cam[smpl_ids]), sigma))

    # mixture of gaussians pose prior
    pprior = lambda w: w * prior(sv.pose)
    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    alpha = 10
    my_exp = lambda x: alpha * ch.exp(x)
    obj_angle = lambda w: w * ch.concatenate([
        my_exp(sv.pose[55]),
        my_exp(-sv.pose[58]),
        my_exp(-sv.pose[12]),
        my_exp(-sv.pose[15])
    ])

    # weight configuration used in the paper, with joints + confidence values from the CNN
    # (all the weights used in the code were obtained via grid search, see the paper for more details)
    # the first list contains the weights for the pose priors,
    # the second list contains the weights for the shape prior
    opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                      [1e2, 5 * 1e1, 1e1, .5 * 1e1])

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    for stage, (w, wbetas) in enumerate(opt_weights):
        _LOGGER.info('stage %01d', stage)
        objs = {}
        objs['j2d'] = obj_j2d(1., 100)
        objs['pose'] = pprior(w)
        objs['pose_exp'] = obj_angle(0.317 * w)
        objs['betas'] = wbetas * betas

        ch.minimize(objs,
                    x0=[sv.betas, sv.pose],
                    method='dogleg',
                    callback=None,
                    options={
                        'maxiter': 100,
                        'e_3': .0001,
                        'disp': 0
                    })

    return sv, cam.r, cam.t.r
Esempio n. 11
0
gmm = mixture.GMM(n_components=nComps, covariance_type='spherical')
win = 40
colors = image[image.shape[0] / 2 - win:image.shape[0] / 2 + win,
               image.shape[1] / 2 - win:image.shape[1] / 2 + win, :].reshape(
                   [4 * win * win, 3])
gmm.fit(colors)

imshape = [win * 2, win * 2, 3]

numPixels = win * 2 * win * 2
chInput = ch.Ch(colors)
numVars = chInput.size

recSoftmaxW = ch.Ch(np.random.uniform(0, 1, [nRecComps, numVars]) / numVars)

chRecLogistic = ch.exp(ch.dot(recSoftmaxW, chInput.reshape([numVars, 1])))
chRecSoftmax = chRecLogistic.ravel() / ch.sum(chRecLogistic)

chZRecComps = ch.zeros([numVars, nRecComps])

chZ = ch.zeros([numVars])

recMeans = ch.Ch(np.random.uniform(0, 1, [3, nRecComps]))
recCovars = 0.2
chRecLogLikelihoods = -0.5 * (chZ.reshape([numPixels, 3, 1]) - ch.tile(
    recMeans, [numPixels, 1, 1]))**2 - ch.log(
        (2 * recCovars) * (1 / (ch.sqrt(recCovars) * np.sqrt(2 * np.pi))))

genZCovars = 0.2
chGenComponentsProbs = ch.Ch(gmm.weights_)
chCompMeans = ch.zeros([nComps, 3])
Esempio n. 12
0
def optimize_on_joints(j2d,
                       model,
                       cam,
                       img,
                       prior,
                       try_both_orient,
                       body_orient,
                       n_betas=10,
                       regs=None,
                       conf=None,
                       viz=False):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image 
    :param prior: mixture of gaussians pose prior
    :param try_both_orient: boolean, if True both body_orient and its flip are considered for the fit
    :param body_orient: 3D vector, initialization for the body orientation
    :param n_betas: number of shape coefficients considered during optimization
    :param regs: regressors for capsules' axis and radius, if not None enables the interpenetration error term
    :param conf: 14D vector storing the confidence values from the CNN
    :param viz: boolean, if True enables visualization during optimization
    :returns: a tuple containing the optimized model, its joints projected on image space, the camera translation
    """
    t0 = time()
    # define the mapping LSP joints -> SMPL joints
    # cids are joints ids for LSP:
    cids = range(12) + [13]
    # joint ids for SMPL
    # SMPL does not have a joint for head, instead we use a vertex for the head
    # and append it later.
    smpl_ids = [8, 5, 2, 1, 4, 7, 21, 19, 17, 16, 18, 20]

    # the vertex id for the joint corresponding to the head
    head_id = 411

    # weights assigned to each joint during optimization;
    # the definition of hips in SMPL and LSP is significantly different so set
    # their weights to zero
    base_weights = np.array(
        [1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.float64)

    if try_both_orient:
        flipped_orient = cv2.Rodrigues(body_orient)[0].dot(
            cv2.Rodrigues(np.array([0., np.pi, 0]))[0])
        flipped_orient = cv2.Rodrigues(flipped_orient)[0].ravel()
        orientations = [body_orient, flipped_orient]
    else:
        orientations = [body_orient]

    if try_both_orient:
        # store here the final error for both orientations,
        # and pick the orientation resulting in the lowest error
        errors = []

    svs = []
    cams = []
    for o_id, orient in enumerate(orientations):
        # initialize the shape to the mean shape in the SMPL training set
        betas = ch.zeros(n_betas)

        # initialize the pose by using the optimized body orientation and the
        # pose prior
        init_pose = np.hstack((orient, prior.weights.dot(prior.means)))

        # instantiate the model:
        # verts_decorated allows us to define how many
        # shape coefficients (directions) we want to consider (here, n_betas)
        sv = verts_decorated(
            trans=ch.zeros(3),
            pose=ch.array(init_pose),
            v_template=model.v_template,
            J=model.J_regressor,
            betas=betas,
            shapedirs=model.shapedirs[:, :, :n_betas],
            weights=model.weights,
            kintree_table=model.kintree_table,
            bs_style=model.bs_style,
            f=model.f,
            bs_type=model.bs_type,
            posedirs=model.posedirs)

        # make the SMPL joints depend on betas
        Jdirs = np.dstack([model.J_regressor.dot(model.shapedirs[:, :, i])
                           for i in range(len(betas))])
        J_onbetas = ch.array(Jdirs).dot(betas) + model.J_regressor.dot(
            model.v_template.r)

        # get joint positions as a function of model pose, betas and trans
        (_, A_global) = global_rigid_transformation(
            sv.pose, J_onbetas, model.kintree_table, xp=ch)
        Jtr = ch.vstack([g[:3, 3] for g in A_global]) + sv.trans

        # add the head joint, corresponding to a vertex...
        Jtr = ch.vstack((Jtr, sv[head_id]))

        # ... and add the joint id to the list
        if o_id == 0:
            smpl_ids.append(len(Jtr) - 1)

        # update the weights using confidence values
        weights = base_weights * conf[
            cids] if conf is not None else base_weights

        # project SMPL joints on the image plane using the estimated camera
        cam.v = Jtr

        # data term: distance between observed and estimated joints in 2D
        obj_j2d = lambda w, sigma: (
            w * weights.reshape((-1, 1)) * GMOf((j2d[cids] - cam[smpl_ids]), sigma))

        # mixture of gaussians pose prior
        pprior = lambda w: w * prior(sv.pose)
        # joint angles pose prior, defined over a subset of pose parameters:
        # 55: left elbow,  90deg bend at -np.pi/2
        # 58: right elbow, 90deg bend at np.pi/2
        # 12: left knee,   90deg bend at np.pi/2
        # 15: right knee,  90deg bend at np.pi/2
        alpha = 10
        my_exp = lambda x: alpha * ch.exp(x)
        obj_angle = lambda w: w * ch.concatenate([my_exp(sv.pose[55]), my_exp(-sv.pose[
                                                 58]), my_exp(-sv.pose[12]), my_exp(-sv.pose[15])])

        if viz:
            import matplotlib.pyplot as plt
            plt.ion()

            def on_step(_):
                """Create visualization."""
                plt.figure(1, figsize=(10, 10))
                plt.subplot(1, 2, 1)
                # show optimized joints in 2D
                tmp_img = img.copy()
                for coord, target_coord in zip(
                        np.around(cam.r[smpl_ids]).astype(int),
                        np.around(j2d[cids]).astype(int)):
                    if (coord[0] < tmp_img.shape[1] and coord[0] >= 0 and
                            coord[1] < tmp_img.shape[0] and coord[1] >= 0):
                        cv2.circle(tmp_img, tuple(coord), 3, [0, 0, 255])
                    if (target_coord[0] < tmp_img.shape[1] and
                            target_coord[0] >= 0 and
                            target_coord[1] < tmp_img.shape[0] and
                            target_coord[1] >= 0):
                        cv2.circle(tmp_img, tuple(target_coord), 3,
                                   [0, 255, 0])
                plt.imshow(tmp_img[:, :, ::-1])
                plt.draw()
                plt.show()
                plt.pause(1e-2)

            on_step(_)
        else:
            on_step = None

        if regs is not None:
            # interpenetration term
            sp = SphereCollisions(
                pose=sv.pose, betas=sv.betas, model=model, regs=regs)
            sp.no_hands = True
        # weight configuration used in the paper, with joints + confidence values from the CNN
        # (all the weights used in the code were obtained via grid search, see the paper for more details)
        # the first list contains the weights for the pose priors,
        # the second list contains the weights for the shape prior
        opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                          [1e2, 5 * 1e1, 1e1, .5 * 1e1])

        # run the optimization in 4 stages, progressively decreasing the
        # weights for the priors
        for stage, (w, wbetas) in enumerate(opt_weights):
            _LOGGER.info('stage %01d', stage)
            objs = {}

            objs['j2d'] = obj_j2d(1., 100)

            objs['pose'] = pprior(w)

            objs['pose_exp'] = obj_angle(0.317 * w)

            objs['betas'] = wbetas * betas

            if regs is not None:
                objs['sph_coll'] = 1e3 * sp

            ch.minimize(
                objs,
                x0=[sv.betas, sv.pose],
                method='dogleg',
                callback=on_step,
                options={'maxiter': 100,
                         'e_3': .0001,
                         'disp': 0})

        t1 = time()
        _LOGGER.info('elapsed %.05f', (t1 - t0))
        if try_both_orient:
            errors.append((objs['j2d'].r**2).sum())
        svs.append(sv)
        cams.append(cam)

    if try_both_orient and errors[0] > errors[1]:
        choose_id = 1
    else:
        choose_id = 0
    if viz:
        plt.ioff()
    return (svs[choose_id], cams[choose_id].r, cams[choose_id].t.r)
Esempio n. 13
0
 def my_exp(x):
     return alpha * ch.exp(x)
Esempio n. 14
0
def optimize_on_DensePose(dp_iuv,
                          op_j2d,
                          w_j2d,
                          model,
                          cam,
                          prior,
                          body_orient,
                          body_trans,
                          body_init,
                          n_betas=10,
                          viz=False,
                          imageid=1):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image 
    :param prior: mixture of gaussians pose prior
    :param try_both_orient: boolean, if True both body_orient and its flip are considered for the fit
    :param body_orient: 3D vector, initialization for the body orientation
    :param n_betas: number of shape coefficients considered during optimization
    :param regs: regressors for capsules' axis and radius, if not None enables the interpenetration error term
    :param conf: 14D vector storing the confidence values from the CNN
    :param viz: boolean, if True enables visualization during optimization
    :returns: a tuple containing the optimized model, its joints projected on image space, the camera translation
    """
    outPath = '/home/xiul/databag/dbfusion/record0/smplify/vid{}'.format(
        imageid)
    if not os.path.isdir(outPath):
        os.mkdir(outPath)

    t0 = time()
    # define the mapping LSP joints -> SMPL joints
    # cids are joints ids for LSP:

    tarIUV = ch.array(dp_iuv)

    # initialize the shape to the mean shape in the SMPL training set
    betas = ch.zeros(n_betas)

    # initialize the pose by using the optimized body orientation and the
    # pose prior

    init_pose = np.hstack((body_orient, prior.weights.dot(prior.means)))
    #init_pose = np.hstack((body_orient, body_init))

    # instantiate the model:
    # verts_decorated allows us to define how many
    # shape coefficients (directions) we want to consider (here, n_betas)
    sv = verts_decorated(trans=ch.array(body_trans),
                         pose=ch.array(init_pose),
                         v_template=model.v_template,
                         J=model.J_regressor,
                         betas=betas,
                         shapedirs=model.shapedirs[:, :, :n_betas],
                         weights=model.weights,
                         kintree_table=model.kintree_table,
                         bs_style=model.bs_style,
                         f=model.f,
                         bs_type=model.bs_type,
                         posedirs=model.posedirs)

    J_tmpx = MatVecMult(J_reg, sv[:, 0])
    J_tmpy = MatVecMult(J_reg, sv[:, 1])
    J_tmpz = MatVecMult(J_reg, sv[:, 2])
    Jtr = ch.vstack((J_tmpx, J_tmpy, J_tmpz)).T

    #Jtr = J_reg.dot(sv)
    cam.v = Jtr

    op_j2d = op_j2d * 1280 / 1920
    w = 1280
    h = 720

    reIUV = render_model(sv,
                         model.f,
                         w,
                         h,
                         cam,
                         near=0.5,
                         far=25,
                         vc=dp_colors,
                         img=None)

    #gaussian_pyramid(input_objective, imshape=None, normalization='SSE', n_levels=3, as_list=False, label=None):
    obj_j2d = lambda w, sigma: (w * w_j2d.reshape((-1, 1)) * GMOf(
        (op_j2d - cam), sigma))
    #input_objective, imshape, normalization, n_levels, as_list

    err = tarIUV - reIUV
    obj_dense = 100 * gaussian_pyramid(err, n_levels=6, normalization='SSE')

    # data term: distance between observed and estimated joints in 2D
    # obj_dense = lambda w, sigma: (
    #      w * GMOf((tarIUV - reIUV).reshape(-1,3), sigma))
    # mixture of gaussians pose prior
    pprior = lambda w: w * prior(sv.pose)
    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    alpha = 10
    my_exp = lambda x: alpha * ch.exp(x)
    obj_angle = lambda w: w * ch.concatenate([
        my_exp(sv.pose[55]),
        my_exp(-sv.pose[58]),
        my_exp(-sv.pose[12]),
        my_exp(-sv.pose[15])
    ])

    if viz:
        import matplotlib.pyplot as plt
        from time import gmtime, strftime

        def on_step(cstep):
            """Create visualization."""
            plt.figure(1, figsize=(10, 10))
            plt.clf()
            plt.subplot(1, 2, 1)
            # show optimized joints in 2D
            tmp_img = reIUV.r.copy()
            tmp_tar = tarIUV.copy()
            plt.imshow(tmp_img)
            for j1, j2 in zip(cam.r, op_j2d):
                plt.plot([j1[0], j2[0]], [j1[1], j2[1]], 'r')
            plt.subplot(1, 2, 2)
            plt.imshow(tmp_tar)
            plt.draw()
            plt.savefig(os.path.join(
                outPath, '{}.png'.format(strftime("%d_%H_%M_%S", gmtime()))),
                        bbox_inches='tight')

        on_step(stepI)

    else:
        on_step = None

    # weight configuration used in the paper, with joints + confidence values from the CNN
    # (all the weights used in the code were obtained via grid search, see the paper for more details)
    # the first list contains the weights for the pose priors,
    # the second list contains the weights for the shape prior
    opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78, 4.78, 4.78, 4.78],
                      [1e2, 5 * 1e1, 1e1, .5 * 1e1, 5, 5, 5])

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    for stage, (w, wbetas) in enumerate(opt_weights):
        _LOGGER.info('stage %01d', stage)
        objs = {}
        if stage >= 4:
            objs['dense'] = obj_dense
        if stage <= 4:
            objs['j2d'] = obj_j2d(1, 100)
        else:
            objs['j2d'] = obj_j2d(0.1, 100)
        objs['pose'] = pprior(w)
        objs['pose_exp'] = obj_angle(0.317 * w)
        objs['betas'] = wbetas * betas

        ch.minimize(objs,
                    x0=[sv.betas, sv.pose],
                    method='dogleg',
                    callback=on_step,
                    options={
                        'maxiter': 10000,
                        'e_3': .001,
                        'disp': 1
                    })

    t1 = time()
    _LOGGER.info('elapsed %.05f', (t1 - t0))

    if viz:
        plt.ioff()
Esempio n. 15
0
    def objFun(vs):

        vs = np.array(vs)
        res = []
        for vs_it, vs_i in enumerate(vs):
            changevars(vs_i, free_variables)

            import densecrf_model

            vis_im = np.array(renderer.indices_image == 1).copy().astype(
                np.bool)
            bound_im = renderer.boundarybool_image.astype(np.bool)

            segmentation, Q = densecrf_model.crfInference(
                rendererGT.r, vis_im, bound_im, [0.75, 0.25, 0.01],
                resultDir + 'imgs/crf/Q_' + str(test_i) + '_it' + str(vs_it))
            vColor = color
            if updateColor:
                if np.sum(segmentation == 0) > 5:
                    segmentRegion = segmentation == 0
                    vColor = np.median(rendererGT.reshape(
                        [-1, 3])[segmentRegion.ravel()],
                                       axis=0) * 1.4
                    vColor = vColor / max(np.max(vColor), 1.)

            chVColors[:] = vColor
            chSHLightCoeffs[:] = lightCoeffs

            variances = stds**2

            fgProb = ch.exp(-(renderer - rendererGT)**2 /
                            (2 * variances)) * (1. /
                                                (stds * np.sqrt(2 * np.pi)))

            h = renderer.r.shape[0]
            w = renderer.r.shape[1]

            occProb = np.ones([h, w])
            bgProb = np.ones([h, w])

            errorFun = -ch.sum(
                ch.log(vis_im[:, :, None] *
                       ((Q[0].reshape([h, w, 1]) * fgProb) +
                        (Q[1].reshape([h, w]) * occProb +
                         Q[2].reshape([h, w]) * bgProb)[:, :, None]) +
                       (1 - vis_im[:, :, None]))) / (h * w)

            if minAppLight:
                options = {'disp': False, 'maxiter': 10}

                def cb(_):
                    print("Error: " + str(errorFun.r))

                ch.minimize({'raw': errorFun},
                            bounds=None,
                            method=method,
                            x0=free_variables_app_light,
                            callback=cb,
                            options=options)

            res = res + [errorFun.r.reshape([1, 1])]

        return np.vstack(res)
Esempio n. 16
0
def optimize_on_joints3D(model, joints3D, opt_shape=False, viz=True):
    """Fit the model to the given set of 3D joints
    :param model: initial SMPL model ===> is modified after optimization
    :param joints3D: 3D joint locations [16 x 3]
    :param opt_shape: boolean, if True optimizes for shape parameter betas
    :param viz: boolean, if True enables visualization during optimization
    """
    t0 = time()
    if joints3D.shape[0] == 16:
        obj_joints3D = lambda w, sigma: (w * GMOf(
            (joints3D - model.J_transformed[get_indices_16()]), sigma))
    elif joints3D.shape[0] == 24:
        obj_joints3D = lambda w, sigma: (w * GMOf(
            (joints3D - model.J_transformed), sigma))
    else:
        raise ('How many joints?')

    # Create the pose prior (GMM over CMU)
    prior = MaxMixtureCompletePrior(n_gaussians=8).get_gmm_prior()
    pprior = lambda w: w * prior(model.pose)
    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    my_exp = lambda x: 10 * chumpy.exp(x)
    obj_angle = lambda w: w * chumpy.concatenate([
        my_exp(model.pose[55]),
        my_exp(-model.pose[58]),
        my_exp(-model.pose[12]),
        my_exp(-model.pose[15])
    ])
    # Visualization at optimization step
    if viz:

        def on_step(_):
            """Draw a visualization."""
            plt.figure(1, figsize=(5, 5))
            renderBody(model)
            plt.draw()
            plt.pause(1e-3)
    else:
        on_step = None

    # weight configuration (pose and shape: original values as in SMPLify)
    # the first list contains the weights for the pose prior,
    # the second list contains the weights for the shape prior
    opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                      [1e2, 5 * 1e1, 1e1, .5 * 1e1])

    print('Initial: error(joints3D) = %.2f' %
          (obj_joints3D(100, 100).r**2).sum())

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    for stage, (wpose, wbetas) in enumerate(opt_weights):
        objs = {}
        objs['joints3D'] = obj_joints3D(100., 100)
        objs['pose'] = pprior(wpose)
        objs['pose_exp'] = obj_angle(0.317 * wpose)
        if opt_shape:
            objs['betas'] = wbetas * model.betas

            chumpy.minimize(objs,
                            x0=[model.pose, model.betas],
                            method='dogleg',
                            callback=on_step,
                            options={
                                'maxiter': 1000,
                                'e_3': .0001,
                                'disp': 0
                            })
        else:
            chumpy.minimize(objs,
                            x0=[model.pose],
                            method='dogleg',
                            callback=on_step,
                            options={
                                'maxiter': 1000,
                                'e_3': .0001,
                                'disp': 0
                            })
        print('Stage %d: error(joints3D) = %.2f' %
              (stage, (objs['joints3D'].r**2).sum()))
    print('\nElapsed theta fitting (%d joints): %.2f sec.' %
          (joints3D.shape[0], (time() - t0)))
Esempio n. 17
0
def optimize_on_vertices(model,
                         vertices,
                         joints3D=np.zeros(1),
                         weights_corr=np.zeros(1),
                         vertices_cross_corr=np.zeros(1),
                         indices_cross_corr=np.zeros(1),
                         weights_cross_corr=np.zeros(1),
                         opt_trans=False,
                         viz=True):
    """Fit the model to the given set of 3D vertices and 3D joints
    :param model: initial SMPL model ===> is modified after optimization
    :param vertices: 3D vertex locations to fit [num_vertices x 3]
    :param joints3D: 3D joint locations to fit [24 x 3]
    :param vertices_cross_corr, indices_cross_corr, weights_cross_corr:
    :for each point in vertices_cross_corr, we have the index of its corresponding smpl vertex and the weight
    :for this correspondence
    :param opt_trans: boolean, if True optimizes only translation
    :param viz: boolean, if True enables visualization during optimization
    """
    t0 = time()
    # Optimization term on the joints3D distance
    if joints3D.shape[0] > 1:
        if joints3D.shape[0] == 16:
            obj_joints3d = lambda w, sigma: (w * GMOf(
                (joints3D - model.J_transformed[get_indices_16()]), sigma))
        elif joints3D.shape[0] == 24:
            obj_joints3d = lambda w, sigma: (w * GMOf(
                (joints3D - model.J_transformed), sigma))
        else:
            raise ('How many joints?')

    # data term: distance between observed and estimated points in 3D
    if (weights_corr.shape[0] == 1):
        weights_corr = np.ones((vertices.shape[0]))

    obj_vertices = lambda w, sigma: (w * GMOf(
        ((vertices.T * weights_corr) - (model.T * weights_corr)).T, sigma))

    if (vertices_cross_corr.shape[0] > 1):
        smplV = model[indices_cross_corr.astype(int), :]
        obj_vertices_cross = lambda w, sigma: (w * GMOf(
            ((vertices_cross_corr.T * weights_cross_corr) -
             (smplV.T * weights_cross_corr)).T, sigma))
    # Create the pose prior (GMM over CMU)
    prior = MaxMixtureCompletePrior(n_gaussians=8).get_gmm_prior()
    pprior = lambda w: w * prior(model.pose)
    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    my_exp = lambda x: 10 * chumpy.exp(x)
    obj_angle = lambda w: w * chumpy.concatenate([
        my_exp(model.pose[55]),
        my_exp(-model.pose[58]),
        my_exp(-model.pose[12]),
        my_exp(-model.pose[15])
    ])
    # Visualization at optimization step
    if viz:

        def on_step(_):
            """Draw a visualization."""
            plt.figure(1, figsize=(5, 5))
            renderBody(model)
            plt.draw()
            plt.pause(1e-3)
    else:
        on_step = None

    # weight configuration (pose and shape: original values as in SMPLify)
    # the first list contains the weights for the pose prior,
    # the second list contains the weights for the shape prior
    # the third list contains the weights for the joints3D loss
    opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                      [1e2, 5 * 1e1, 1e1, .5 * 1e1], [5, 5, 5, 5])
    print('Initial:')
    print('\terror(vertices) = %.2f' % (obj_vertices(100, 100).r**2).sum())
    if (joints3D.shape[0] > 1):
        print('\terror(joints3d) = %.2f' % (obj_joints3d(100, 100).r**2).sum())
    if (vertices_cross_corr.shape[0] > 1):
        print('\terror(vertices_cross) = %.2f' %
              (obj_vertices_cross(100, 100).r**2).sum())

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    for stage, (wpose, wbetas, wjoints3D) in enumerate(opt_weights):
        print('Stage %d' % stage)
        objs = {}
        if (joints3D.shape[0] > 1):
            objs['joints3D'] = wjoints3D * obj_joints3d(100., 100)
        objs['vertices'] = obj_vertices(100., 100)
        if (vertices_cross_corr.shape[0] > 1):
            objs['vertices_cross'] = obj_vertices_cross(100., 100)
        objs['pose'] = pprior(wpose)
        objs['pose_exp'] = obj_angle(0.317 * wpose)
        objs['betas'] = wbetas * model.betas

        if opt_trans:
            chumpy.minimize(objs,
                            x0=[model.trans],
                            method='dogleg',
                            callback=on_step,
                            options={
                                'maxiter': 1000,
                                'e_3': .0001,
                                'disp': 0
                            })
        else:
            chumpy.minimize(objs,
                            x0=[model.pose, model.betas],
                            method='dogleg',
                            callback=on_step,
                            options={
                                'maxiter': 1000,
                                'e_3': .0001,
                                'disp': 0
                            })
        print('\terror(vertices) = %.2f' % (objs['vertices'].r**2).sum())
        if (joints3D.shape[0] > 1):
            print('\terror(joints3D) = %.2f' % (objs['joints3D'].r**2).sum())
        if (vertices_cross_corr.shape[0] > 1):
            print('\terror(vertices_cross) = %.2f' %
                  (objs['vertices_cross'].r**2).sum())
    print('Elapsed iteration %.2f sec.' % (time() - t0))
Esempio n. 18
0
def optimize_on_joints(j2d,
                       model,
                       cam,
                       img,
                       prior,
                       try_both_orient,
                       body_orient,
                       n_betas=10,
                       regs=None,
                       conf=None,
                       viz=False):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image 
    :param prior: mixture of gaussians pose prior
    :param try_both_orient: boolean, if True both body_orient and its flip are considered for the fit
    :param body_orient: 3D vector, initialization for the body orientation
    :param n_betas: number of shape coefficients considered during optimization
    :param regs: regressors for capsules' axis and radius, if not None enables the interpenetration error term
    :param conf: 14D vector storing the confidence values from the CNN
    :param viz: boolean, if True enables visualization during optimization
    :returns: a tuple containing the optimized model, its joints projected on image space, the camera translation
    """
    t0 = time()
    # define the mapping LSP joints -> SMPL joints
    # cids are joints ids for LSP:
    cids = range(12) + [13]
    # joint ids for SMPL
    # SMPL does not have a joint for head, instead we use a vertex for the head
    # and append it later.
    smpl_ids = [8, 5, 2, 1, 4, 7, 21, 19, 17, 16, 18, 20]

    # the vertex id for the joint corresponding to the head
    head_id = 411

    # weights assigned to each joint during optimization;
    # the definition of hips in SMPL and LSP is significantly different so set
    # their weights to zero
    base_weights = np.array([1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],
                            dtype=np.float64)

    if try_both_orient:
        flipped_orient = cv2.Rodrigues(body_orient)[0].dot(
            cv2.Rodrigues(np.array([0., np.pi, 0]))[0])
        flipped_orient = cv2.Rodrigues(flipped_orient)[0].ravel()
        orientations = [body_orient, flipped_orient]
    else:
        orientations = [body_orient]

    if try_both_orient:
        # store here the final error for both orientations,
        # and pick the orientation resulting in the lowest error
        errors = []

    svs = []
    cams = []
    for o_id, orient in enumerate(orientations):
        # initialize the shape to the mean shape in the SMPL training set
        betas = ch.zeros(n_betas)

        # initialize the pose by using the optimized body orientation and the
        # pose prior
        init_pose = np.hstack((orient, prior.weights.dot(prior.means)))

        # instantiate the model:
        # verts_decorated allows us to define how many
        # shape coefficients (directions) we want to consider (here, n_betas)
        sv = verts_decorated(trans=ch.zeros(3),
                             pose=ch.array(init_pose),
                             v_template=model.v_template,
                             J=model.J_regressor,
                             betas=betas,
                             shapedirs=model.shapedirs[:, :, :n_betas],
                             weights=model.weights,
                             kintree_table=model.kintree_table,
                             bs_style=model.bs_style,
                             f=model.f,
                             bs_type=model.bs_type,
                             posedirs=model.posedirs)

        # make the SMPL joints depend on betas
        Jdirs = np.dstack([
            model.J_regressor.dot(model.shapedirs[:, :, i])
            for i in range(len(betas))
        ])
        J_onbetas = ch.array(Jdirs).dot(betas) + model.J_regressor.dot(
            model.v_template.r)

        # get joint positions as a function of model pose, betas and trans
        (_, A_global) = global_rigid_transformation(sv.pose,
                                                    J_onbetas,
                                                    model.kintree_table,
                                                    xp=ch)
        Jtr = ch.vstack([g[:3, 3] for g in A_global]) + sv.trans

        # add the head joint, corresponding to a vertex...
        Jtr = ch.vstack((Jtr, sv[head_id]))

        # ... and add the joint id to the list
        if o_id == 0:
            smpl_ids.append(len(Jtr) - 1)

        # update the weights using confidence values
        weights = base_weights * conf[
            cids] if conf is not None else base_weights

        # project SMPL joints on the image plane using the estimated camera
        cam.v = Jtr

        # data term: distance between observed and estimated joints in 2D
        obj_j2d = lambda w, sigma: (w * weights.reshape((-1, 1)) * GMOf(
            (j2d[cids] - cam[smpl_ids]), sigma))

        # mixture of gaussians pose prior
        pprior = lambda w: w * prior(sv.pose)
        # joint angles pose prior, defined over a subset of pose parameters:
        # 55: left elbow,  90deg bend at -np.pi/2
        # 58: right elbow, 90deg bend at np.pi/2
        # 12: left knee,   90deg bend at np.pi/2
        # 15: right knee,  90deg bend at np.pi/2
        alpha = 10
        my_exp = lambda x: alpha * ch.exp(x)
        obj_angle = lambda w: w * ch.concatenate([
            my_exp(sv.pose[55]),
            my_exp(-sv.pose[58]),
            my_exp(-sv.pose[12]),
            my_exp(-sv.pose[15])
        ])

        if viz:
            import matplotlib.pyplot as plt
            plt.ion()

            def on_step(_):
                """Create visualization."""
                plt.figure(1, figsize=(10, 10))
                plt.subplot(1, 2, 1)
                # show optimized joints in 2D
                tmp_img = img.copy()
                for coord, target_coord in zip(
                        np.around(cam.r[smpl_ids]).astype(int),
                        np.around(j2d[cids]).astype(int)):
                    if (coord[0] < tmp_img.shape[1] and coord[0] >= 0
                            and coord[1] < tmp_img.shape[0] and coord[1] >= 0):
                        cv2.circle(tmp_img, tuple(coord), 3, [0, 0, 255])
                    if (target_coord[0] < tmp_img.shape[1]
                            and target_coord[0] >= 0
                            and target_coord[1] < tmp_img.shape[0]
                            and target_coord[1] >= 0):
                        cv2.circle(tmp_img, tuple(target_coord), 3,
                                   [0, 255, 0])
                plt.imshow(tmp_img[:, :, ::-1])
                plt.draw()
                plt.show()
                plt.pause(1e-2)

            on_step(_)
        else:
            on_step = None

        if regs is not None:
            # interpenetration term
            sp = SphereCollisions(pose=sv.pose,
                                  betas=sv.betas,
                                  model=model,
                                  regs=regs)
            sp.no_hands = True
        # weight configuration used in the paper, with joints + confidence values from the CNN
        # (all the weights used in the code were obtained via grid search, see the paper for more details)
        # the first list contains the weights for the pose priors,
        # the second list contains the weights for the shape prior
        opt_weights = zip([4.04 * 1e2, 4.04 * 1e2, 57.4, 4.78],
                          [1e2, 5 * 1e1, 1e1, .5 * 1e1])

        # run the optimization in 4 stages, progressively decreasing the
        # weights for the priors
        for stage, (w, wbetas) in enumerate(opt_weights):
            _LOGGER.info('stage %01d', stage)
            objs = {}

            objs['j2d'] = obj_j2d(1., 100)

            objs['pose'] = pprior(w)

            objs['pose_exp'] = obj_angle(0.317 * w)

            objs['betas'] = wbetas * betas

            if regs is not None:
                objs['sph_coll'] = 1e3 * sp

            ch.minimize(objs,
                        x0=[sv.betas, sv.pose],
                        method='dogleg',
                        callback=on_step,
                        options={
                            'maxiter': 100,
                            'e_3': .0001,
                            'disp': 0
                        })

        t1 = time()
        _LOGGER.info('elapsed %.05f', (t1 - t0))
        if try_both_orient:
            errors.append((objs['j2d'].r**2).sum())
        svs.append(sv)
        cams.append(cam)

    if try_both_orient and errors[0] > errors[1]:
        choose_id = 1
    else:
        choose_id = 0
    if viz:
        plt.ioff()
    return (svs[choose_id], cams[choose_id].r, cams[choose_id].t.r, Jtr)
Esempio n. 19
0
def optimize_on_DensePose(raw_img,
                          tar_img,
                          dp_iuv,
                          op_j2d,
                          w_j2d,
                          model,
                          cam,
                          cam_old,
                          prior,
                          init_trans,
                          init_pose,
                          init_betas,
                          n_betas=10,
                          viz=False,
                          imgname='tmp'):
    """Fit the model to the given set of joints, given the estimated camera
    :param j2d: 14x2 array of CNN joints
    :param model: SMPL model
    :param cam: estimated camera
    :param img: h x w x 3 image 
    :param prior: mixture of gaussians pose prior
    :param try_both_orient: boolean, if True both body_orient and its flip are considered for the fit
    :param body_orient: 3D vector, initialization for the body orientation
    :param n_betas: number of shape coefficients considered during optimization
    :param regs: regressors for capsules' axis and radius, if not None enables the interpenetration error term
    :param conf: 14D vector storing the confidence values from the CNN
    :param viz: boolean, if True enables visualization during optimization
    :returns: a tuple containing the optimized model, its joints projected on image space, the camera translation
    """
    outPath = os.path.join(ROOT_PATH, 'smplify/{}_stage'.format(imgname))
    if not os.path.isdir(outPath):
        os.mkdir(outPath)

    print outPath

    dp_iuv_tar = dp_iuv.copy()
    width = dp_iuv_tar.shape[1]
    height = dp_iuv_tar.shape[0]

    dp_iuv_weight = np.zeros(dp_iuv_tar.shape) + 1
    dp_iuv_weight[dp_iuv_tar[:, :, 2] < 0.95, 0] = 1
    dp_iuv_weight[dp_iuv_tar[:, :, 2] < 0.95, 1] = 1
    dp_iuv_weight[dp_iuv_tar[:, :, 2] < 0.95, 2] = 255.0 / 24

    dp_iuv_weight = ch.array(dp_iuv_weight)
    t0 = time()
    # define the mapping LSP joints -> SMPL joints
    # cids are joints ids for LSP:

    tarIUV = ch.array(dp_iuv)

    ori_betas = init_betas.copy()
    ori_betas_ch = ch.array(ori_betas)

    # initialize the shape to the mean shape in the SMPL training set
    betas = ch.array(init_betas)

    # initialize the pose by using the optimized body orientation and the
    # pose prior

    pose = ch.array(init_pose)
    #init_pose = np.hstack((body_orient, body_init))

    # instantiate the model:
    # verts_decorated allows us to define how many
    # shape coefficients (directions) we want to consider (here, n_betas)
    sv = verts_decorated(trans=ch.array(init_trans),
                         pose=pose,
                         v_template=model.v_template,
                         J=model.J_regressor,
                         betas=betas,
                         shapedirs=model.shapedirs[:, :, :n_betas],
                         weights=model.weights,
                         kintree_table=model.kintree_table,
                         bs_style=model.bs_style,
                         f=model.f,
                         bs_type=model.bs_type,
                         posedirs=None)

    J_tmpx = MatVecMult(J_reg, sv[:, 0])
    J_tmpy = MatVecMult(J_reg, sv[:, 1])
    J_tmpz = MatVecMult(J_reg, sv[:, 2])
    Jtr = ch.vstack((J_tmpx, J_tmpy, J_tmpz)).T

    #Jtr = J_reg.dot(sv)
    cam.v = Jtr

    reIUV = render_model(sv,
                         model.f,
                         width,
                         height,
                         cam,
                         near=0.5,
                         far=25,
                         vc=dp_colors,
                         img=None)

    reModel = render_model(sv,
                           model.f,
                           width,
                           height,
                           cam,
                           near=0.5,
                           far=25,
                           vc=None,
                           img=None)

    fullModel = render_model(sv,
                             model.f,
                             raw_img.shape[1],
                             raw_img.shape[0],
                             cam_old,
                             near=0.5,
                             far=25,
                             vc=None,
                             img=None)

    #gaussian_pyramid(input_objective, imshape=None, normalization='SSE', n_levels=3, as_list=False, label=None):
    def obj_j2d(w, sigma):
        return (w * w_j2d.reshape((-1, 1)) * GMOf((op_j2d - cam), sigma))

    #input_objective, imshape, normalization, n_levels, as_list

    err = (tarIUV - reIUV) * dp_iuv_weight

    err_uv = 1 - ch.exp(-err[:, :, 0:2]**2 / 1)

    err_inds = 1 - ch.exp(-err[:, :, 2]**2 / 0.001)
    err_total = ch.dstack((err_uv, err_inds))
    #obj_dense = gaussian_pyramid(err, n_levels=4, normalization='SSE')
    obj_dense = gaussian_pyramid(err_total, n_levels=4, normalization=None)

    # TODO
    # the render error can be further extended to geodistic error.

    # data term: distance between observed and estimated joints in 2D
    # obj_dense = lambda w, sigma: (
    #      w * GMOf((tarIUV - reIUV).reshape(-1,3), sigma))
    # mixture of gaussians pose prior
    def pprior(w):
        return w * prior(sv.pose)

    # joint angles pose prior, defined over a subset of pose parameters:
    # 55: left elbow,  90deg bend at -np.pi/2
    # 58: right elbow, 90deg bend at np.pi/2
    # 12: left knee,   90deg bend at np.pi/2
    # 15: right knee,  90deg bend at np.pi/2
    alpha = 10

    def my_exp(x):
        return alpha * ch.exp(x)

    def obj_angle(w):
        return w * ch.concatenate([
            my_exp(sv.pose[55]),
            my_exp(-sv.pose[58]),
            my_exp(-sv.pose[12]),
            my_exp(-sv.pose[15])
        ])

    def viz_func(stage_num):
        #plt.figure(1, figsize=(10, 10))

        # show optimized joints in 2D
        tmp_img = reIUV.r.copy()
        tmp_tar = tarIUV.copy()
        tmp_model = reModel.r.copy()
        full_model = fullModel.r.copy()
        # w = tmp_tar.shape[1]
        # h = tmp_tar.shape[0]
        for aa in ax:
            for cax in aa:
                cax.clear()

        ax[0][0].imshow(tar_img)
        ax[0][0].imshow(tmp_img, alpha=0.5)
        for j1, j2, w_ts in zip(cam.r, op_j2d, w_j2d):
            if (w_ts > 0):
                ax[0][0].plot([j1[0], j2[0]], [j1[1], j2[1]], 'r')
        ax[0][0].set_xlim([0, width])
        ax[0][0].set_ylim([height, 0])

        ax[0][1].imshow(tar_img)
        ax[0][1].imshow(tmp_tar, alpha=0.5)
        ax[0][1].set_xlim([0, width])
        ax[0][1].set_ylim([height, 0])

        ax[0][2].imshow(tar_img)
        tmp_model_alpha = np.ones((tmp_model.shape[0], tmp_model.shape[1]))
        tmp_model_alpha[tmp_model[:, :, 0] < 1e-2] = 0
        tmp_model = np.dstack((tmp_model, tmp_model_alpha))
        ax[0][2].imshow(tmp_model)
        ax[0][2].set_xlim([0, width])
        ax[0][2].set_ylim([height, 0])
        tmp_err = err_total.r.copy()

        #show error
        ax[1][0].imshow(tmp_err[:, :, 0])
        ax[1][0].set_xlim([0, width])
        ax[1][0].set_ylim([height, 0])

        ax[1][1].imshow(tmp_err[:, :, 1])
        ax[1][1].set_xlim([0, width])
        ax[1][1].set_ylim([height, 0])

        ax[1][2].imshow(tmp_err[:, :, 2])
        ax[1][2].set_xlim([0, width])
        ax[1][2].set_ylim([height, 0])

        #show target
        ax[2][0].imshow(tmp_tar[:, :, 0])
        ax[2][0].set_xlim([0, width])
        ax[2][0].set_ylim([height, 0])

        ax[2][1].imshow(tmp_tar[:, :, 1])
        ax[2][1].set_xlim([0, width])
        ax[2][1].set_ylim([height, 0])

        ax[2][2].imshow(tmp_tar[:, :, 2])
        ax[2][2].set_xlim([0, width])
        ax[2][2].set_ylim([height, 0])

        #show reproj
        ax[3][0].imshow(tmp_img[:, :, 0])
        ax[3][0].set_xlim([0, width])
        ax[3][0].set_ylim([height, 0])

        ax[3][1].imshow(tmp_img[:, :, 1])
        ax[3][1].set_xlim([0, width])
        ax[3][1].set_ylim([height, 0])

        ax[3][2].imshow(tmp_img[:, :, 2])
        ax[3][2].set_xlim([0, width])
        ax[3][2].set_ylim([height, 0])

        for aa in ax:
            aa[0].set_xticks(())
            aa[0].set_yticks(())
            aa[1].set_xticks(())
            aa[1].set_yticks(())
            aa[2].set_xticks(())
            aa[2].set_yticks(())

        #plt.tight_layout()
        plt.draw()
        plt.savefig(os.path.join(outPath, 'stage-{}.png'.format(stage_num)),
                    bbox_inches='tight')
        full_model_int = full_model.copy()
        full_model_int *= 255
        full_model_int = full_model_int.astype(np.uint8)
        cv2.imwrite(os.path.join(outPath, 'model-{}.png'.format(stage_num)),
                    full_model_int)
        out_params = {
            'pose': sv.pose.r,
            'shape': sv.betas.r,
            'trans': sv.trans.r
        }
        with open(os.path.join(outPath, 'param-{}.pkl'.format(stage_num)),
                  'w') as fio:
            pickle.dump(out_params, fio, pickle.HIGHEST_PROTOCOL)

    #if viz:

    if viz and False:

        def on_step(cstep):
            """Create visualization."""
            # TODO this function is in vis_func
            #plt.savefig(os.path.join(outPath,'{}.png'.format(strftime("%d_%H_%M_%S", gmtime()))),bbox_inches='tight')

        on_step(stepI)

    else:
        on_step = None

    # weight configuration used in the paper, with joints + confidence values from the CNN
    # (all the weights used in the code were obtained via grid search, see the paper for more details)
    # the first list contains the weights for the pose priors,
    # the second list contains the weights for the shape prior

    # opt_weights = zip([4.78, 3.78, 2.78, 1.78],
    #                   [5, 5, 5, 5],
    #                   [1, 0.25, 0.10, 0])
    opt_weights = zip([4.78], [50], [10])

    # run the optimization in 4 stages, progressively decreasing the
    # weights for the priors
    for stage, (w, wbetas, w_joints) in enumerate(opt_weights):
        _LOGGER.info('stage %01d', stage)
        objs = {}

        #objs['dense'] = obj_dense
        objs['j2d'] = obj_j2d(w_joints, 50)
        objs['pose'] = pprior(w)
        objs['pose_exp'] = obj_angle(0.317 * w)
        #objs['betas'] = wbetas * (sv.betas - ori_betas_ch)

        ch.minimize(
            objs,
            #x0=[sv.betas, sv.pose, sv.trans],
            x0=[sv.pose, sv.trans],
            method='dogleg',
            callback=on_step,
            options={
                'maxiter': 10000,
                'e_3': .001,
                'disp': 1
            })

        viz_func(254)

    t1 = time()
    _LOGGER.info('elapsed %.05f', (t1 - t0))

    if viz and False:
        plt.ioff()