def _max_ent_state_circuit(num_qubits: int) -> Circuit: r"""Generates a circuits which prepares the maximally entangled state |\omega\rangle = U |0\rangle = \sum_i |i\rangle \otimes |i\rangle . Args: num_qubits: The number of qubits on which the circuit is applied. Only 2 or 4 qubits are supported. Returns: The circuits which prepares the state |\omega\rangle. """ qreg = LineQubit.range(num_qubits) circ = Circuit() if num_qubits == 2: circ.append(H.on(qreg[0])) circ.append(CNOT.on(*qreg)) elif num_qubits == 4: # Prepare half of the qubits in a uniform superposition circ.append(H.on(qreg[0])) circ.append(H.on(qreg[1])) # Create a perfect correlation between the two halves of the qubits. circ.append(CNOT.on(qreg[0], qreg[2])) circ.append(CNOT.on(qreg[1], qreg[3])) else: raise NotImplementedError( "Only 2- or 4-qubit maximally entangling circuits are supported." ) return circ
def test_simplify_circuit_exponents(): qreg = LineQubit.range(2) circuit = Circuit([H.on(qreg[0]), CNOT.on(*qreg), Z.on(qreg[1])]) # Invert circuit inverse_circuit = cirq.inverse(circuit) inverse_repr = inverse_circuit.__repr__() inverse_qasm = inverse_circuit._to_qasm_output().__str__() # Expected circuit after simplification expected_inv = Circuit([Z.on(qreg[1]), CNOT.on(*qreg), H.on(qreg[0])]) expected_repr = expected_inv.__repr__() expected_qasm = expected_inv._to_qasm_output().__str__() # Check inverse_circuit is logically equivalent to expected_inverse # but they have a different representation assert inverse_circuit == expected_inv assert inverse_repr != expected_repr assert inverse_qasm != expected_qasm # Simplify the circuit _simplify_circuit_exponents(inverse_circuit) # Check inverse_circuit has the expected simplified representation simplified_repr = inverse_circuit.__repr__() simplified_qasm = inverse_circuit._to_qasm_output().__str__() assert inverse_circuit == expected_inv assert simplified_repr == expected_repr assert simplified_qasm == expected_qasm
def test_simple_pauli_deco_dict_CNOT(): """Tests that the _simple_pauli_deco_dict function returns a decomposition dicitonary which is consistent with a local depolarizing noise model. The channel acting on the state each qubit is assumed to be: D(rho) = = (1 - epsilon) rho + epsilon I/2 = (1 - p) rho + p/3 (X rho X + Y rho Y^dag + Z rho Z) """ # Deduce epsilon from BASE_NOISE epsilon = BASE_NOISE * 4.0 / 3.0 c_neg = -(1 / 4) * epsilon / (1 - epsilon) c_pos = 1 - 3 * c_neg qreg = LineQubit.range(2) # Get the decomposition of a CNOT gate deco = DECO_DICT[CNOT.on(*qreg)] # The first term of 'deco' corresponds to no error occurring first_coefficient, first_imp_seq = deco[0] assert np.isclose(c_pos * c_pos, first_coefficient) assert first_imp_seq == [CNOT.on(*qreg)] # The second term corresponds to a Pauli X error on one qubit second_coefficient, second_imp_seq = deco[1] assert np.isclose(c_pos * c_neg, second_coefficient) assert second_imp_seq == [CNOT.on(*qreg), X.on(qreg[0])] # The last term corresponds to two Pauli Z errors on both qubits last_coefficient, last_imp_seq = deco[-1] assert np.isclose(c_neg * c_neg, last_coefficient) assert last_imp_seq == [CNOT.on(*qreg), Z.on(qreg[0]), Z.on(qreg[1])]
def _max_ent_state_circuit(num_qubits: int) -> Circuit: r"""Generates a circuit which prepares the maximally entangled state |\omega\rangle = U |0\rangle = \sum_i |i\rangle \otimes |i\rangle . Args: num_qubits: The number of qubits on which the circuit is applied. It must be an even number because of the structure of a maximally entangled state. Returns: The circuits which prepares the state |\omega\rangle. Raises: Value error: if num_qubits is not an even positive integer. """ if not isinstance(num_qubits, int) or num_qubits % 2 or num_qubits == 0: raise ValueError( "The argument 'num_qubits' must be an even and positive integer.") alice_reg = LineQubit.range(num_qubits // 2) bob_reg = LineQubit.range(num_qubits // 2, num_qubits) return Circuit( # Prepare alice_register in a uniform superposition H.on_each(*alice_reg), # Correlate alice_register with bob_register [CNOT.on(alice_reg[i], bob_reg[i]) for i in range(num_qubits // 2)], )
return noisy_simulation( circuit, BASE_NOISE, obs, ) # Simple identity 1-qubit circuit for testing q = LineQubit(1) oneq_circ = Circuit(Z.on(q), Z.on(q)) # Simple identity 2-qubit circuit for testing qreg = LineQubit.range(2) twoq_circ = Circuit( Y.on(qreg[1]), CNOT.on(*qreg), Y.on(qreg[1]), ) @mark.parametrize("circuit", [oneq_circ, twoq_circ]) @mark.parametrize("decomposition_dict", [NOISELESS_DECO_DICT, DECO_DICT_SIMP, DECO_DICT]) def test_execute_with_pec_one_qubit(circuit: Circuit, decomposition_dict: DecompositionDict): """Tests that execute_with_pec mitigates the error of a noisy expectation value. """ unmitigated = executor(circuit) mitigated = execute_with_pec(circuit, executor,
obs = np.array( [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]] ) else: raise ValueError("The input must be a circuit with 1 or 2 qubits.") return noisy_simulation(circuit, BASE_NOISE, obs,) # Simple identity 1-qubit circuit for testing q = LineQubit(1) oneq_circ = Circuit(Z.on(q), Z.on(q)) # Simple identity 2-qubit circuit for testing qreg = LineQubit.range(2) twoq_circ = Circuit(Y.on(qreg[1]), CNOT.on(*qreg), Y.on(qreg[1]),) @mark.parametrize("circuit", [oneq_circ, twoq_circ]) @mark.parametrize( "decomposition_dict", [NOISELESS_DECO_DICT, DECO_DICT_SIMP, DECO_DICT] ) def test_execute_with_pec_one_qubit( circuit: Circuit, decomposition_dict: DecompositionDict ): """Tests that execute_with_pec mitigates the error of a noisy expectation value. """ unmitigated = executor(circuit) mitigated = execute_with_pec( circuit, executor, decomposition_dict=decomposition_dict
def _simple_pauli_deco_dict(base_noise: float, simplify_paulis: bool = False ) -> DecompositionDict: """Returns a simple hard-coded decomposition dictionary to be used for testing and protoptyping. The decomposition is compatible with one-qubit or two-qubit circuits involving only Pauli and CNOT gates. The keys of the output dictionary are Pauli and CNOT operations. The decomposition assumes that Pauli and CNOT operations, followed by local depolarizing noise, are implementable. Args: base_noise: The depolarizing noise level. simplify_paulis: If True, products of Paulis are simplified to a single Pauli. If False, Pauli sequences are not simplified. Returns: decomposition_dict: The decomposition dictionary. """ # Initialize two qubits qreg = LineQubit.range(2) # Single-qubit Pauli operations i0 = I.on(qreg[0]) x0 = X.on(qreg[0]) y0 = Y.on(qreg[0]) z0 = Z.on(qreg[0]) i1 = I.on(qreg[1]) x1 = X.on(qreg[1]) y1 = Y.on(qreg[1]) z1 = Z.on(qreg[1]) single_paulis = [x0, y0, z0, x1, y1, z1] # Single-qubit decomposition coefficients epsilon = base_noise * 4 / 3 c_neg = -(1 / 4) * epsilon / (1 - epsilon) c_pos = 1 - 3 * c_neg assert np.isclose(c_pos + 3 * c_neg, 1.0) # Single-qubit decomposition dictionary decomposition_dict = {} if simplify_paulis: # Hard-coded simplified gates decomposition_dict = { x0: [(c_pos, [x0]), (c_neg, [i0]), (c_neg, [z0]), (c_neg, [y0])], y0: [(c_pos, [y0]), (c_neg, [z0]), (c_neg, [i0]), (c_neg, [x0])], z0: [(c_pos, [z0]), (c_neg, [y0]), (c_neg, [x0]), (c_neg, [i0])], x1: [(c_pos, [x1]), (c_neg, [i1]), (c_neg, [z1]), (c_neg, [y1])], y1: [(c_pos, [y1]), (c_neg, [z1]), (c_neg, [i1]), (c_neg, [x1])], z1: [(c_pos, [z1]), (c_neg, [y1]), (c_neg, [x1]), (c_neg, [i1])], } else: for local_paulis in [[x0, y0, z0], [x1, y1, z1]]: for key in local_paulis: key_deco_pos = [(c_pos, [key])] key_deco_neg = [(c_neg, [key, op]) for op in local_paulis] decomposition_dict[key] = ( key_deco_pos + key_deco_neg # type: ignore ) # Two-qubit Paulis xx = [x0, x1] xy = [x0, y1] xz = [x0, z1] yx = [y0, x1] yy = [y0, y1] yz = [y0, z1] zx = [z0, x1] zy = [z0, y1] zz = [z0, z1] double_paulis = [xx, xy, xz, yx, yy, yz, zx, zy, zz] # Two-qubit decomposition coefficients (assuming local noise) c_pos_pos = c_pos * c_pos c_pos_neg = c_neg * c_pos c_neg_neg = c_neg * c_neg assert np.isclose(c_pos_pos + 6 * c_pos_neg + 9 * c_neg_neg, 1.0) cnot = CNOT.on(qreg[0], qreg[1]) cnot_decomposition = [(c_pos_pos, [cnot])] for p in single_paulis: cnot_decomposition.append((c_pos_neg, [cnot] + [p])) for pp in double_paulis: cnot_decomposition.append((c_neg_neg, [cnot] + pp)) # type: ignore decomposition_dict[cnot] = cnot_decomposition # type: ignore return decomposition_dict # type: ignore