Esempio n. 1
0
def test_sycamore_gate_tabulation(seed):
    base_gate = unitary(FSimGate(np.pi / 2, np.pi / 6))
    tab = gate_product_tabulation(base_gate,
                                  0.1,
                                  sample_scaling=2,
                                  random_state=np.random.RandomState(seed))
    result = tab.compile_two_qubit_gate(base_gate)
    assert result.success
Esempio n. 2
0
"""Tests for gate_compilation.py"""
import numpy as np
import pytest

from cirq import unitary, FSimGate, value
from cirq_google.optimizers.two_qubit_gates.gate_compilation import (
    gate_product_tabulation,
    GateTabulation,
)
from cirq_google.optimizers.two_qubit_gates.math_utils import unitary_entanglement_fidelity
from cirq.testing import random_special_unitary, assert_equivalent_repr

_rng = value.parse_random_state(11)  # for determinism

sycamore_tabulation = gate_product_tabulation(unitary(
    FSimGate(np.pi / 2, np.pi / 6)),
                                              0.2,
                                              random_state=_rng)

sqrt_iswap_tabulation = gate_product_tabulation(unitary(
    FSimGate(np.pi / 4, np.pi / 24)),
                                                0.1,
                                                random_state=_rng)

_random_2Q_unitaries = np.array(
    [random_special_unitary(4, random_state=_rng) for _ in range(100)])


@pytest.mark.parametrize('tabulation',
                         [sycamore_tabulation, sqrt_iswap_tabulation])
@pytest.mark.parametrize('target', _random_2Q_unitaries)
Esempio n. 3
0
def main(samples: int = 1000, max_infidelity: float = 0.01):
    """Demonstration of the usage of the GateTabulation gate compiler.

    Args:
        samples: Number of random 2-qubit unitary samples to compile.
        max_infidelity: Maximum allowed infidelity between randomly generated
            gate and the gate compilation used to generate it. The example
            runtime scales as max_infidelity^{-2}.
    """
    # Define a base gate for compilation
    theta = np.pi / 4
    phi = np.pi / 24
    base = unitary(FSimGate(theta, phi))

    # The GateTabulation object is essentially a tabulation of many randomly
    # generated gate products (of the form A k A or A k A k A), along with their
    # associate KAK vectors. The parameter max_infidelity determines the
    # approximate "density" of the tabulated gates. Specifically, it bounds the
    # typical distance between an arbitrary two-qubit gate and the nearest
    # tabulated gate.
    start = time()
    tabulation = gate_product_tabulation(base, max_infidelity)

    print(tabulation.summary)
    print(f'Gate tabulation time : {time() - start} seconds.')

    # Generate many random two-qubit gates, then attempt to compile them using
    # the tabulation.
    unitaries = [random_special_unitary(4) for _ in range(samples)]

    infidelities = []
    failed_infidelities = []
    start = time()
    for target in unitaries:
        # result.actual_gate is the compiled gate product intended to match the
        # target. result.success denotes is the actual gate is expected to be
        # within the desired fidelity to the target. It can be False if the
        # base gate cannot "fill" the Weyl chamber using at most 3 products.
        # result.local_unitaries stores the local unitaries required to
        # compile the target unitary from the base unitary.
        result = tabulation.compile_two_qubit_gate(target)
        infidelity = 1 - unitary_entanglement_fidelity(target,
                                                       result.actual_gate)
        if result.success:
            infidelities.append(infidelity)
        else:
            failed_infidelities.append(infidelity)  # coverage: ignore
    t_comp = time() - start

    print(f'Gate compilation time : {t_comp:.3f} seconds '
          f'({t_comp / samples:.4f} s per gate)')

    infidelities = np.array(infidelities)
    failed_infidelities = np.array(failed_infidelities)

    if np.size(failed_infidelities):
        # coverage: ignore
        print(f'Number of "failed" compilations:'
              f' {np.size(failed_infidelities)}.')
        print(f'Maximum infidelity of "failed" compilation: '
              f'{np.max(failed_infidelities)}')

    plt.figure()
    plt.hist(infidelities, bins=25, range=[0, max_infidelity * 1.1])
    ylim = plt.ylim()
    plt.plot([max_infidelity] * 2,
             ylim,
             '--',
             label='Maximum tabulation infidelity')
    plt.xlabel('Compiled gate infidelity vs target')
    plt.ylabel('Counts')
    plt.legend()
    plt.title(f'Base FSim(theta={theta:.4f}, phi={phi:.4f})')

    plt.show()