Esempio n. 1
0
def load_dataset(dataset, data_root=''):
    """Return tuple (image list, query list, bounding boxes, gnd dictionary)"""

    if isinstance(dataset, dict):
        root = os.path.join(data_root, dataset['image_root'])
        images, qimages = None, None
        if dataset['database_list'] is not None:
            images = [path_join(root, x.strip("\n")) for x in open(dataset['database_list']).readlines()]
        if dataset['query_list'] is not None:
            qimages = [path_join(root, x.strip("\n")) for x in open(dataset['query_list']).readlines()]
        bbxs = None
        gnd = None

    elif dataset == 'train':
        training_set = 'retrieval-SfM-120k'
        db_root = os.path.join(data_root, 'train', training_set)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}.pkl'.format(training_set))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)['train']
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
        qimages = []
        bbxs = None
        gnd = None

    elif dataset == 'val_eccv20':
        db_root = os.path.join(data_root, 'train', 'retrieval-SfM-120k')
        fn_val_proper = db_root+'/retrieval-SfM-120k-val-eccv2020.pkl' # pos are all with #inl >=3 & <= 10
        with open(fn_val_proper, 'rb') as f:
            db = pickle.load(f)
        ims_root = os.path.join(db_root, 'ims')
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
        gnd = db['gnd']
        qidx = db['qidx']
        qimages = [images[x] for x in qidx]
        bbxs = None

    elif "/" in dataset:
        with open(dataset, 'rb') as handle:
            db = pickle.load(handle)
        images, qimages, bbxs, gnd = db['imlist'], db['qimlist'], None, db['gnd']

    else:
        cfg = configdataset(dataset, os.path.join(data_root, 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        if 'bbx' in cfg['gnd'][0].keys():
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        else:
            bbxs = None
        gnd = cfg['gnd']

    return images, qimages, bbxs, gnd
Esempio n. 2
0
def learning_lw(net):
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta["mean"], std=net.meta["std"])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    test_whiten = "retrieval-SfM-30k"
    print(">> {}: Learning whitening...".format(test_whiten))

    # loading db
    db_root = os.path.join(get_data_root(), "train", test_whiten)
    ims_root = os.path.join(db_root, "ims")
    db_fn = os.path.join(db_root, "{}-whiten.pkl".format(test_whiten))
    with open(db_fn, "rb") as f:
        db = pickle.load(f)
    images = [cid2filename(db["cids"][i], ims_root) for i in range(len(db["cids"]))]

    # extract whitening vectors
    print(">> {}: Extracting...".format(args.test_whiten))
    wvecs = extract_vectors(net, images, 1024, transform)

    # learning whitening
    print(">> {}: Learning...".format(args.test_whiten))
    wvecs = wvecs.numpy()
    m, P = whitenlearn(wvecs, db["qidxs"], db["pidxs"])
    Lw = {"m": m, "P": P}
    return Lw
Esempio n. 3
0
    def __init__(self,
                 name,
                 imsize=None,
                 transform=None,
                 loader=default_loader,
                 random_size=False):

        # setting up paths
        mode = 'val'
        data_root = get_data_root()
        db_root = os.path.join(data_root, 'train', name)
        ims_root = os.path.join(db_root, 'ims')

        # loading db
        db_fn = os.path.join(db_root, '{}.pkl'.format(name))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)[mode]

        # initializing tuples dataset
        self.name = name
        self.imsize = imsize
        self.images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]
        self.clusters = db['cluster']
        self.qpool = db['qidxs']

        self.transform = transform
        self.loader = loader
        self.random_size = random_size
Esempio n. 4
0
File: test.py Progetto: wzb1005/mdir
def _compute_whitening(whitening, net, image_size, transform, ms, msp):
    # compute whitening
    start = time.time()

    print('>> {}: Learning whitening...'.format(whitening))

    # loading db
    db_root = os.path.join(get_data_root(), 'train', whitening)
    ims_root = os.path.join(db_root, 'ims')
    db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(whitening))
    with open(db_fn, 'rb') as f:
        db = pickle.load(f)
    images = [
        cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))
    ]

    # extract whitening vectors
    print('>> {}: Extracting...'.format(whitening))
    wvecs = extract_vectors(net, images, image_size, transform, ms=ms, msp=msp)

    # learning whitening
    print('>> {}: Learning...'.format(whitening))
    wvecs = wvecs.numpy()
    m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
    Lw = {'m': m, 'P': P}

    elapsed = time.time() - start
    print('>> {}: elapsed time: {}'.format(whitening, htime(elapsed)))

    return Lw, elapsed
Esempio n. 5
0
    def __init__(
        self,
        imsize=None,
        nnum=5,
        qsize=2000,
        poolsize=20000,
        transform=None,
        loader=default_loader,
        norm=None,
        filename=None,
        random=True,
    ):

        # setting up paths
        data_root = get_data_root()
        name = "retrieval-SfM-120k"
        db_root = os.path.join(data_root, "train", name)
        ims_root = os.path.join(db_root, "ims")

        # loading db
        db_fn = os.path.join(db_root, "{}.pkl".format(name))
        with open(db_fn, "rb") as f:
            db = pickle.load(f)["val"]

        # initializing tuples dataset
        self.imsize = imsize
        self.images = [
            cid2filename(db["cids"][i], ims_root)
            for i in range(len(db["cids"]))
        ]
        self.clusters = db["cluster"]
        self.qpool = db["qidxs"]
        # self.ppool = db['pidxs']

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.poolvecs = None

        self.transform = transform
        self.loader = loader
        self.pool_clusters_centers = None
        self.clustered_pool = []
        self.norm = norm
        self.kmeans_ = None
        if filename is None:
            self.filename = FNAME
        else:
            self.filename = filename

        self.loaded_imgs = []
        self.random = random
Esempio n. 6
0
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=20000,
                 transform=None,
                 loader=loader_hashed):

        if not (mode == 'train' or mode == 'val'):
            raise RuntimeError(
                "MODE should be either train or val, passed as string")

        # setting up paths
        data_root = get_data_root()
        db_root = os.path.join(data_root, 'train', name)
        ims_root = os.path.join(db_root, 'ims')

        # loading db
        db_fn = os.path.join(db_root, '{}.pkl'.format(name))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)[mode]

        # setting fullpath for images
        self.images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']

        ## If we want to keep only unique q-p pairs
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 10
Esempio n. 7
0
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=20000,
                 transform=None,
                 loader=default_loader,
                 dataset_pkl=None,
                 ims_root=None):

        if not (mode == 'train' or mode == 'val'):
            raise (RuntimeError(
                "MODE should be either train or val, passed as string"))

        if name.startswith('retrieval-SfM'):
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = ims_root or os.path.join(db_root, 'ims')

            # Read db
            if dataset_pkl:
                print('>> Using external dataset for {}: {}...'.format(
                    mode, dataset_pkl))
            db_fn = dataset_pkl or os.path.join(db_root, '{}.pkl'.format(name))

            if db_fn.startswith("http://") or db_fn.startswith("https://"):
                with urlopen(db_fn) as handle:
                    loaded = io.BytesIO(handle.read())
            else:
                with open(db_fn, 'rb') as handle:
                    loaded = io.BytesIO(handle.read())

            # Verifying
            match = re.search(r'.*-([a-f0-9]{8}[a-f0-9]*)\.pth', db_fn)
            if match:
                stored_hsh = match.group(1)
                computed_hsh = hashlib.sha256(
                    loaded).hexdigest()[:len(stored_hsh)]
                if computed_hsh != stored_hsh:
                    raise ValueError("Computed hash '%s' is not consistent with stored hash '%s'" \
                        % (computed_hsh, stored_hsh))

            # Load db
            db = pickle.load(loaded)[mode]

            # setting fullpath for images
            self.images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

        elif name.startswith('google-landmark-recognition'):
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = '/mnt/fry2/users/datasets/landmarkscvprw18/recognition/'
            ims_root = os.path.join(db_root, 'images', 'train')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                os.path.join(ims_root, db['cids'][i] + '.jpg')
                for i in range(len(db['cids']))
            ]
        else:
            raise (RuntimeError("Unknown dataset name!"))

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']

        ## If we want to keep only unique q-p pairs
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 100
Esempio n. 8
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            # loading db
            db_root = os.path.join(get_data_root(), 'train', args.whitening)
            ims_root = os.path.join(db_root, 'ims')
            db_fn = os.path.join(db_root,
                                 '{}-whiten.pkl'.format(args.whitening))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)
            images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net,
                                    images,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms,
                                msp=msp)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Esempio n. 9
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.whitening))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.whitening)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.whitening))
        wvecs = extract_vectors(net,
                                images,
                                args.image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(args.whitening))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == 'reco':
            images, qimages = landmark_recognition_dataset()
            bbxs = [None for x in qimages]

        elif dataset == 'retr':
            images, _ = landmark_retrieval_dataset()
            qimages = []
            bbxs = [None for x in qimages]

        else:
            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        with open('%s_fnames.pkl' % dataset, 'wb') as f:
            pickle.dump([images, qimages], f)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        vecs = vecs.numpy()
        print('>> saving')
        np.save('{}_vecs.npy'.format(dataset), vecs)

        if len(qimages) > 0:
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)
            qvecs = qvecs.numpy()
            np.save('{}_qvecs.npy'.format(dataset), qvecs)

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # TODO

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
def main():
    args = parser.parse_args()
    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    result_dir = 'retreival_results'
    if args.network_path is not None:
        result_dir = os.path.join(result_dir, args.network_path)
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        result_dir = os.path.join(result_dir, args.network_offtheshelf)
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()
        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']
        else:
            # Save whitening TODO
            print('>> {}: Learning whitening...'.format(args.whitening))

            # loading db
            db_root = os.path.join(get_data_root(), 'train', args.whitening)
            ims_root = os.path.join(db_root, 'ims')
            db_fn = os.path.join(db_root,
                                 '{}-whiten.pkl'.format(args.whitening))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)
            images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net,
                                    images,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    data_root = args.data_root
    datasets = datasets_names[args.dataset]
    result_dict = {}
    for dataset in datasets:
        start = time.time()
        result_dict[dataset] = {}
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        images = get_imlist(data_root, dataset, args.train_txt)
        qimages = get_imlist(data_root, dataset, args.query_txt)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               root=os.path.join(data_root, dataset),
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                root=os.path.join(data_root, dataset),
                                ms=ms,
                                msp=msp)
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        scores, ranks = cal_ranks(vecs, vecs, Lw)
        result_dict[dataset]['train'] = {'scores': scores, 'ranks': ranks}
        scores, ranks = cal_ranks(vecs, qvecs, Lw)
        result_dict[dataset]['test'] = {'scores': scores, 'ranks': ranks}
        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))

    # Save retrieval results
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)
    result_file = os.path.join(result_dir, args.outfile)
    np.save(result_file, result_dict)
    print('Save retrieval results to {}'.format(result_file))
Esempio n. 11
0
def main():
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
    using_cdvs = float(args.using_cdvs)
    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    result_dir=args.network_path[0:-8]
    epoch_lun=args.network_path[0:-8].split('/')[-1].replace('model_epoch','')
    print(">> Creating directory if it does not exist:\n>> '{}'".format(result_dir))
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)
    for dataset in datasets:
        start = time.time()
        # search, rank, and print
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        tuple_bbxs_qimlist=None
        tuple_bbxs_imlist=None
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        # extract database and query vectors

        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=tuple_bbxs_qimlist, ms=ms, msp=msp, batchsize=1)
        qvecs = qvecs.numpy()
        qvecs = qvecs.astype(np.float32)
        np.save(os.path.join(result_dir, "{}_qvecs_ep{}_resize.npy".format(dataset,epoch_lun)), qvecs)
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, bbxs=tuple_bbxs_imlist, msp=msp, batchsize=1)
        vecs = vecs.numpy()
        vecs = vecs.astype(np.float32)
        np.save(os.path.join(result_dir, "{}_vecs_ep{}_resize.npy".format(dataset,epoch_lun)), vecs)
        scores = np.dot(vecs.T, qvecs)
        if using_cdvs!=0:
            print('>> {}: cdvs global descriptor loading...'.format(dataset))
            qvecs_global = cfg['qimlist_global']
            vecs_global = cfg['imlist_global']
            scores_global = np.dot(vecs_global, qvecs_global.T)
            scores+=scores_global*using_cdvs
        ranks = np.argsort(-scores, axis=0)
        if args.ir_remove!='0':
            rank_len=10
            rank_re = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_relevent.txt'.format(dataset)))
            ## the max value of rank_len
            MAX_RANK_LEN = int((rank_re.shape[0]) ** 0.5)
            rank_re=rank_re.reshape(MAX_RANK_LEN,MAX_RANK_LEN,rank_re.shape[1])
            for m in range(rank_re.shape[2]):
                for i in range(rank_re.shape[0]):
                    rank_re[i][i][m]=1.0
            quanzhong=[1,0.7,0.4]+[0.1]*(MAX_RANK_LEN-3)
            for m in range(rank_re.shape[2]):
                #if adaption, then change the rank_len to a adaption params according to the rank_re_q, q_aer, cons_n
                if args.ir_adaption:
                    using_local_query=True
                    cons_n = 5
                    q_aer = float(args.ir_adaption)
                    if using_local_query:
                        ## using local feature scores, please don't forget note the query_q belong to deep
                        rank_re_q = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_query.txt'.format(dataset)))
                        query_q = rank_re_q[:, m]
                    else:
                        ## using deep feature scores
                        query_q = scores[ranks[:, m], m]

                    rank_len=0
                    jishu=0
                    for idx in range(min(len(query_q),MAX_RANK_LEN)-cons_n):
                        if jishu<cons_n:
                            if query_q[idx]>q_aer:
                                rank_len=idx+1
                            else:
                                jishu+=1
                        else:
                            break
                max_dim = min(rank_len, MAX_RANK_LEN)
                print (max_dim)
                if max_dim>2:
                    #put the image to the MAX_RANK_LEN2 location if equals max_dim then re rank in the maxdim length
                    list2 = []
                    list_hou = []
                    MAX_RANK_LEN2 = max_dim
                    for i in range(MAX_RANK_LEN2):
                        if i < max_dim:
                            fenshu = 0
                            for j in range(max_dim):
                                fenshu+=rank_re[min(i,j)][max(i,j)][m]*quanzhong[j]
                            fenshu = fenshu / (max_dim - 1)
                            if fenshu > float(args.ir_remove):
                                list2.append(ranks[i][m])
                            else:
                                list_hou.append(ranks[i][m])
                        else:
                            list2.append(ranks[i][m])
                    ranks[0:MAX_RANK_LEN2, m] = list2 + list_hou
        np.savetxt(os.path.join(result_dir, "{}_ranks.txt".format(dataset)), ranks.astype(np.int))
        if dataset == 'cdvs_test_retrieval':
            compute_map_and_print(dataset, ranks, cfg['gnd_id'])
        else:
            compute_map_and_print(dataset, ranks, cfg['gnd'])
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=20000,
                 transform=None,
                 loader=default_loader):

        if not (mode == 'train' or mode == 'val'):
            raise (RuntimeError(
                "MODE should be either train or val, passed as string"))

        if name.startswith('retrieval-SfM'):
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = os.path.join(db_root, 'ims')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            self.clusters = db['cluster']
            self.qpool = db['qidxs']
            self.ppool = db['pidxs']

        elif name == 'google-landmarks-dataset-resize':
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = get_data_root()
            ims_root = os.path.join(db_root, 'resize_train_image')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                os.path.join(ims_root, db['id'][i] + '.jpg')
                for i in range(len(db['id']))
            ]

            self.clusters = db['landmark_id']
            self.qpool = db['qidxs']
            self.ppool = db['pidxs']

        elif name == 'google-landmarks-dataset':
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = get_data_root()
            ims_root = os.path.join(db_root, 'train')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                os.path.join(ims_root, db['id'][i] + '.jpg')
                for i in range(len(db['id']))
            ]

            self.clusters = db['landmark_id']
            self.qpool = db['qidxs']
            self.ppool = db['pidxs']

        elif name == 'google-landmarks-dataset-v2':
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = get_data_root()
            train_ims_root = os.path.join(db_root, 'train')
            # val_ims_root = '/home/iap205/Datasets/google-landmarks-dataset-v2-val20000'
            val_ims_root = os.path.join(db_root, 'val')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            if mode == 'train':
                self.images = [
                    os.path.join(train_ims_root,
                                 '/'.join(list(db['id'][i])[:3]),
                                 db['id'][i] + '.jpg')
                    for i in range(len(db['id']))
                ]
            # usage the val on SSD to speed up data extract
            elif mode == 'val':
                # print('>> usage the val on SSD to speed up data extract...')
                self.images = [
                    os.path.join(val_ims_root, db['id'][i] + '.jpg')
                    for i in range(len(db['id']))
                ]

            self.clusters = db['landmark_id']
            self.qpool = db['qidxs']
            self.ppool = db['pidxs']

        elif name.startswith('GLD-v2-cleaned'):
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = get_data_root()
            train_ims_root = os.path.join(db_root, 'train')
            # val_ims_root = '/home/iap205/Datasets/google-landmarks-dataset-v2-val20000'
            # In google landmark retrieval competition, real test is in kaggle system, so this local test is separated
            # from training set, which is equivalent to validation set
            # val_ims_root = os.path.join(db_root, 'test', 'google-landmarks-dataset-v2-test', 'jpg')

            # loading db
            if name == 'GLD-v2-cleaned':
                db_fn = os.path.join(db_root, 'train_cleaned_rm.npz')
            elif name == 'GLD-v2-cleaned-m2':
                db_fn = os.path.join(db_root, 'train_cleaned_m2_rm.npz')
            db = np.load(db_fn)
            id, ld_id, qp_pairs = db['id'], db['ld_id'], db['qp_pairs']

            # setting fullpath for images
            if mode == 'train':
                self.images = [
                    os.path.join(train_ims_root, '/'.join(list(id[i])[:3]),
                                 id[i] + '.jpg') for i in range(len(id))
                ]
            # usage the val on SSD to speed up data extract
            elif mode == 'val':
                # print('>> usage the val on SSD to speed up data extract...')
                # self.images = [os.path.join(val_ims_root, db['id'][i] + '.jpg')
                #                for i in range(len(db['id']))]
                raise (
                    RuntimeError("This train set do not provide validation!"))

            self.clusters = ld_id.tolist()
            self.qpool = qp_pairs[:, 0].tolist()
            self.ppool = qp_pairs[:, 1].tolist()

        else:
            raise (RuntimeError("Unknown dataset name!"))

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        # self.clusters = db['cluster']
        # self.clusters = db['qidxs']
        # self.clusters = db['pidxs']

        ## If we want to keep only unique q-p pairs
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 10
Esempio n. 13
0
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=2000,
                 transform=None,
                 sample_diy=False,
                 using_cdvs=0,
                 loader=default_loader):

        if not (mode == 'train' or mode == 'val'):
            raise (RuntimeError(
                "MODE should be either train or val, passed as string"))
        self.using_cdvs = using_cdvs
        if name.startswith('retrieval-SfM'):
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = os.path.join(db_root, 'ims')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name + '-my'))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]
            if self.using_cdvs != 0:
                self.global_cdvs = db['cids_cdvs']
        elif name.startswith('cdvs_train_retrieval'):
            data_root = get_data_root()
            # loading db
            db_fn = os.path.join(data_root, 'train', '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]
            # setting fullpath for images
            self.images = [
                os.path.join(data_root, db['cids'][i])
                for i in range(len(db['cids']))
            ]

        else:
            raise (RuntimeError("Unknown dataset name!"))
        if self.using_cdvs != 0:
            self.global_cdvs = db['cids_cdvs']
        # initializing tuples dataset
        self.sample_diy = sample_diy
        self.name = name
        self.mode = mode
        self.imsize = imsize
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 10
Esempio n. 14
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()
        """
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        print (vecs.shape)
        print (qvecs.shape)

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        print (scores.shape)

        # to save scores (single query)
        # oxford
        #f = 'oxf_single.npy'
        # paris
        #f = 'par_single.npy'
        # roxford
        #f = 'roxf_single.npy'
        # rparis
        f = 'rpar_single.npy'

        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            # save
            np.save(f, scores)

            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])
        """

        ############################################################
        # Test
        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]

        print(qimages)

        # to load scores
        # oxford
        #f = 'oxf_single.npy'
        #f = 'oxf_mq_avg.npy'
        #f = 'oxf_mq_max.npy'
        #f = 'oxf_sc_imf.npy'

        # paris
        #f = 'par_single.npy'
        #f = 'par_mq_avg.npy'
        #f = 'par_mq_max.npy'
        f = 'par_sc_imf.npy'

        # roxford
        #f = 'roxf_single.npy'
        #f = 'roxf_mq_avg.npy'
        #f = 'roxf_mq_max.npy'
        #f = 'roxf_sc_imf.npy'

        # rparis
        #f = 'rpar_single.npy'
        #f = 'rpar_mq_avg.npy'
        #f = 'rpar_mq_max.npy'
        #f = 'rpar_sc_imf.npy'

        # load
        scores = np.load(f)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
net.cuda()
net.eval()

# set up the transform
normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std'])
transform = transforms.Compose([transforms.ToTensor(), normalize])

#%%
# loading db
db_root = os.path.join(get_data_root(), 'train', whitening)
ims_root = os.path.join(db_root, 'ims')
db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(whitening))
with open(db_fn, 'rb') as f:
    db = pickle.load(f)
images = [
    cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))
]

# %%
# extract whitening vectors
print('>> {}: Extracting...'.format(whitening))
split_num = 4
extract_num = int(len(images) / split_num)
num_list = list(range(0, len(images) + 1, extract_num))
num_list[-1] = len(images)
# %%
part = [0]
for k in part:
    print('>>>> extract part {} of {}'.format(k + 1, split_num))
    wvecs = extract_vectors(net,
                            images[num_list[k]:num_list[k + 1]],
Esempio n. 16
0
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=20000,
                 transform=None,
                 loader=default_loader):

        if not (mode == 'train' or mode == 'val'):
            raise (RuntimeError(
                "MODE should be either train or val, passed as string"))

        if name == "scores":
            # special logic for scores database
            from score_retrieval.exports import db

        else:
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = os.path.join(db_root, 'ims')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        if name == "scores":
            from score_retrieval.exports import train_images
            self.images = train_images
        else:
            self.images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']
        print("cluster:", repr(self.clusters)[:1000])
        print("qpool:", repr(self.qpool)[:1000])
        print("ppool:", repr(self.ppool)[:1000])

        ## If we want to keep only unique q-p pairs
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader
Esempio n. 17
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None
    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        #cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = []
        gallery_file = open(
            '/home/zzd/University1652-Baseline/gallery_name.txt')
        for line in gallery_file:
            images.append('/home/zzd/University1652-Baseline/' +
                          line.replace('\n', '')[2:])
        #qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        qimages = []
        query_file = open('/home/zzd/University1652-Baseline/query_name.txt')
        for line in query_file:
            qimages.append('/home/zzd/University1652-Baseline/' +
                           line.replace('\n', '')[2:])

        gallery_label = get_id(images)
        query_label = get_id(qimages)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        gallery_feature = extract_vectors(net,
                                          images,
                                          args.image_size,
                                          transform,
                                          ms=ms,
                                          msp=msp)
        gallery_feature = torch.transpose(gallery_feature, 0, 1)
        print('>> {}: query images...'.format(dataset))
        query_feature = extract_vectors(net,
                                        qimages,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)
        query_feature = torch.transpose(query_feature, 0, 1)
        result = {
            'gallery_f': gallery_feature.numpy(),
            'gallery_label': gallery_label,
            'query_f': query_feature.numpy(),
            'query_label': query_label
        }
        scipy.io.savemat('pytorch_result.mat', result)
        os.system('python evaluate_gpu.py')
        print('>> {}: Evaluating...'.format(dataset))
    def __init__(self, name, mode, imsize=None, nnum=5, qsize=2000, poolsize=20000, transform=None, loader=default_loader,
                 store_nidxs_others_up_to=-1, store_nidxs_others_order_by='ascending',
                 totally_random_nidxs=False, totally_random_nidxs_others=False,
                 dense_refresh_batch_and_nearby=-1, dense_refresh_batch_multi_hop=-1, dense_refresh_batch_random=-1):

        if not (mode == 'train' or mode == 'val'):
            raise(RuntimeError("MODE should be either train or val, passed as string"))

        if name.startswith('retrieval-SfM'):
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = os.path.join(db_root, 'ims')
    
            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]
    
            # setting fullpath for images
            self.images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

        elif name.startswith('gl'):
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = '/mnt/fry2/users/datasets/landmarkscvprw18/recognition/'
            ims_root = os.path.join(db_root, 'images', 'train')
    
            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]
    
            # setting fullpath for images
            self.images = [os.path.join(ims_root, db['cids'][i]+'.jpg') for i in range(len(db['cids']))]
        else:
            raise(RuntimeError("Unknown dataset name!"))

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']

        ## If we want to keep only unique q-p pairs 
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None
        
        # the rest of original similarity search results for the negative pool
        # after limiting to the size of self.nnum
        self.nidxs_others = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 10
        
        # Dense refresh experiments
        self.qvecs = None
        self.poolvecs = None
        self.pvecs = None

        self.store_nidxs_others_up_to = store_nidxs_others_up_to
        self.store_nidxs_others_order_by = store_nidxs_others_order_by

        self.dense_refresh_batch_and_nearby = dense_refresh_batch_and_nearby
        self.dense_refresh_batch_multi_hop = dense_refresh_batch_multi_hop
        self.dense_refresh_batch_random = dense_refresh_batch_random
            
        self.totally_random_nidxs = totally_random_nidxs
        self.totally_random_nidxs_others = totally_random_nidxs_others
Esempio n. 19
0
    def __init__(
        self,
        imsize=None,
        nnum=5,
        qsize=2000,
        poolsize=20000,
        transform=None,
        loader=default_loader,
        filename=None,
        q_percent=1,
    ):

        # setting up paths
        data_root = get_data_root()
        name = "retrieval-SfM-120k"
        db_root = os.path.join(data_root, "train", name)
        ims_root = os.path.join(db_root, "ims")

        # loading db
        db_fn = os.path.join(db_root, "{}.pkl".format(name))
        with open(db_fn, "rb") as f:
            db = pickle.load(f)["val"]

        # initializing tuples dataset
        self.imsize = imsize
        self.images = [
            cid2filename(db["cids"][i], ims_root)
            for i in range(len(db["cids"]))
        ]
        self.clusters = db["cluster"]
        self.qpool = db["qidxs"]
        # self.ppool = db['pidxs']

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = self.qpool
        self.index = np.arange(len(self.qidxs))

        if q_percent < 1:
            number = int(len(self.qidxs) * q_percent)
            self.index = np.random.permutation(self.index)
            self.index = self.index[:number]

        self.pidxs = []
        self.nidxs = []

        self.poolvecs = None

        self.transform = transform
        self.loader = loader
        self.filename = filename
        self.phase = 1

        self.ranks = torch.load(f"{filename}/ranks_362")
        if os.path.isfile(f"{filename}/pool_vecs"):
            self.pool_vecs = pickle.load(open(f"{filename}/pool_vecs", "rb"))
        print(len(self.images))
        self.loaded_images = []
        if os.path.exists("./images"):
            self.loaded_images = pickle.load(open("./images", "rb"))
        else:
            for i in range(len(self.images)):
                try:
                    img = self.loader(self.images[i])
                    if self.imsize is not None:
                        img = imresize(img, self.imsize)
                    if self.transform is not None:
                        img_tensor = self.transform(img).unsqueeze(0)
                    img.close()
                    self.loaded_images.append(img_tensor)
                except:
                    self.loaded_images.append(None)
            pickle.dump(self.loaded_images, open("./images", "wb"))
def main():
    args = parser.parse_args()

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        if "epoch" in state:
            print("Model after {} epochs".format(state["epoch"]))
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters: test both single scale and multiscale
    ms_singlescale = [1]
    msp_singlescale = 1

    ms_multiscale = list(eval(args.multiscale))
    msp_multiscale = 1
    if len(ms_multiscale
           ) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
               'regional'] and not net.meta['whitening']:
        msp_multiscale = net.pool.p.item()
    print(">> Set-up multiscale:")
    print(">>>> ms: {}".format(ms_multiscale))
    print(">>>> msp: {}".format(msp_multiscale))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()
        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))
            Lw = net.meta['Lw'][args.whitening]
        else:
            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)
            else:
                Lw = {}
                for whiten_type, ms, msp in zip(
                    ["ss", "ms"], [ms_singlescale, ms_multiscale],
                    [msp_singlescale, msp_multiscale]):
                    print('>> {0}: Learning whitening {1}...'.format(
                        args.whitening, whiten_type))

                    # loading db
                    db_root = os.path.join(get_data_root(), 'train',
                                           args.whitening)
                    ims_root = os.path.join(db_root, 'ims')
                    db_fn = os.path.join(
                        db_root, '{}-whiten.pkl'.format(args.whitening))
                    with open(db_fn, 'rb') as f:
                        db = pickle.load(f)
                    images = [
                        cid2filename(db['cids'][i], ims_root)
                        for i in range(len(db['cids']))
                    ]

                    # extract whitening vectors
                    print('>> {}: Extracting...'.format(args.whitening))
                    wvecs = extract_vectors(net,
                                            images,
                                            args.image_size,
                                            transform,
                                            ms=ms,
                                            msp=msp)

                    # learning whitening
                    print('>> {}: Learning...'.format(args.whitening))
                    wvecs = wvecs.numpy()
                    m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                    Lw[whiten_type] = {'m': m, 'P': P}

                    print('>> {}: elapsed time: {}'.format(
                        args.whitening, htime(time.time() - start)))

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        for whiten_type, ms, msp in zip(["ss", "ms"],
                                        [ms_singlescale, ms_multiscale],
                                        [msp_singlescale, msp_multiscale]):
            print('>> Extracting feature on {0}, whitening {1}'.format(
                dataset, whiten_type))

            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net,
                                   images,
                                   args.image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)

            print('>> {}: Evaluating...'.format(dataset))

            # convert to numpy
            vecs = vecs.numpy()
            qvecs = qvecs.numpy()

            # search, rank, and print
            scores = np.dot(vecs.T, qvecs)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset, ranks, cfg['gnd'])

            if Lw is not None:
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw[whiten_type]['m'],
                                      Lw[whiten_type]['P'])
                qvecs_lw = whitenapply(qvecs, Lw[whiten_type]['m'],
                                       Lw[whiten_type]['P'])

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks = np.argsort(-scores, axis=0)
                compute_map_and_print(
                    dataset + ' + whiten {}'.format(whiten_type), ranks,
                    cfg['gnd'])

            print('>> {}: elapsed time: {}'.format(dataset,
                                                   htime(time.time() - start)))
Esempio n. 21
0
    def __init__(self,
                 name,
                 mode,
                 imsize=None,
                 nnum=5,
                 qsize=2000,
                 poolsize=20000,
                 transform=None,
                 loader=default_loader):

        if not (mode == 'train' or mode == 'val'):
            raise (RuntimeError(
                "MODE should be either train or val, passed as string"))

        if name.startswith('retrieval-SfM'):
            # setting up paths
            data_root = get_data_root()
            db_root = os.path.join(data_root, 'train', name)
            ims_root = os.path.join(db_root, 'ims')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

        elif name.startswith('gl'):
            ## TODO: NOT IMPLEMENTED YET PROPOERLY (WITH AUTOMATIC DOWNLOAD)

            # setting up paths
            db_root = '/mnt/fry2/users/datasets/landmarkscvprw18/recognition/'
            ims_root = os.path.join(db_root, 'images', 'train')

            # loading db
            db_fn = os.path.join(db_root, '{}.pkl'.format(name))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)[mode]

            # setting fullpath for images
            self.images = [
                os.path.join(ims_root, db['cids'][i] + '.jpg')
                for i in range(len(db['cids']))
            ]
        else:
            raise (RuntimeError("Unknown dataset name!"))

        # initializing tuples dataset
        self.name = name
        self.mode = mode
        self.imsize = imsize
        self.clusters = db['cluster']
        self.qpool = db['qidxs']
        self.ppool = db['pidxs']

        ## If we want to keep only unique q-p pairs
        ## However, ordering of pairs will change, although that is not important
        # qpidxs = list(set([(self.qidxs[i], self.pidxs[i]) for i in range(len(self.qidxs))]))
        # self.qidxs = [qpidxs[i][0] for i in range(len(qpidxs))]
        # self.pidxs = [qpidxs[i][1] for i in range(len(qpidxs))]

        # size of training subset for an epoch
        self.nnum = nnum
        self.qsize = min(qsize, len(self.qpool))
        self.poolsize = min(poolsize, len(self.images))
        self.qidxs = None
        self.pidxs = None
        self.nidxs = None

        self.transform = transform
        self.loader = loader

        self.print_freq = 10
Esempio n. 22
0
def test(datasets, net):
    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                print_freq=10,
                                batchsize=20)  # implemented with torch.no_grad

        # learning whitening
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        if dataset == 'cdvs_test_retrieval':
            bbxs = None
        else:
            bbxs = None

        print('>> {}: database images...'.format(dataset))
        if args.pool == 'gem':
            ms = [1, 1 / 2**(1 / 2), 1 / 2]
        else:
            ms = [1]
        if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
                'regional'] and not net.meta['whitening']:
            msp = net.pool.p.item()
            print(">> Set-up multiscale:")
            print(">>>> ms: {}".format(ms))
            print(">>>> msp: {}".format(msp))
        else:
            msp = 1
        vecs = extract_vectors(net,
                               images,
                               image_size,
                               transform,
                               bbxs,
                               ms=ms,
                               msp=msp,
                               print_freq=1000,
                               batchsize=1)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                image_size,
                                transform,
                                bbxs,
                                ms=ms,
                                msp=msp,
                                print_freq=1000,
                                batchsize=1)  # implemented with torch.no_grad

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        if dataset == 'cdvs_test_retrieval':
            compute_map_and_print(dataset, ranks, cfg['gnd_id'])
        else:
            compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Esempio n. 23
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        images = get_imlist("E:\\PycharmProjects\\image-retrieval\\holiday2\\")
        names = []
        for i, img_path in enumerate(images):
            img_name = os.path.split(img_path)[1]
            print(img_name)
            names.append(img_name)
        # prepare config structure for the test dataset
        # cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        # images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        # try:
        #     bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        # except:
        #     bbxs = None  # for holidaysmanrot and copydays

        # names = []
        # for i, img_path in enumerate(images):
        #     img_name = os.path.split(img_path)[1]
        #     print(img_name)
        #     names.append(img_name)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)

        # convert to numpy
        vecs = vecs.numpy()
        vecs = vecs.T
        print("--------------------------------------------------")
        print("      writing feature extraction results ...")
        print("--------------------------------------------------")
        output = "gem_res_holiday_3.h5"
        h5f = h5py.File(output, 'w')
        h5f.create_dataset('dataset_1', data=vecs)
        h5f.create_dataset('dataset_2', data=np.string_(names))
        h5f.close()

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Esempio n. 24
0
def main():
    #def process(network_path, datasets='oxford5k,paris6k', whitening=None, image_size=1024, multiscale = '[1]', query=None):
    args = parser.parse_args()
    #args.query = None
    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    #os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    #net.cuda()
    #net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None
            print(whiten_fn)
            return
            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    # query type

    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))

        #for i in cfg: print(i)
        #print(cfg['gnd'][0]['bbx'])
        #return

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        feas_dir = os.path.join(cfg['dir_data'], 'features')
        if not os.path.isdir(feas_dir):
            os.mkdir(feas_dir)
        feas_sv = os.path.join(
            feas_dir, dataset + '_' + args.network_path + '_features.pkl')
        if not os.path.isfile(feas_sv):
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            vecs = extract_vectors(net,
                                   images,
                                   args.image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            with open(feas_sv, 'wb') as f:
                pickle.dump(vecs, f)
        else:
            with open(feas_sv, 'rb') as f:
                vecs = pickle.load(f)

        print('>> {}: query images...'.format(dataset))
        if args.query is not None:
            qimages = [args.query]
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)
        else:
            qfeas_dir = feas_dir
            qfeas_sv = os.path.join(
                qfeas_dir,
                dataset + '_' + args.network_path + '_qfeatures.pkl')
            if not os.path.isfile(qfeas_sv):
                qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
                try:
                    bbxs = [
                        tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])
                    ]
                except:
                    bbxs = None
                qvecs = extract_vectors(net,
                                        qimages,
                                        args.image_size,
                                        transform,
                                        bbxs=bbxs,
                                        ms=ms,
                                        msp=msp)
                with open(qfeas_sv, 'wb') as f:
                    pickle.dump(qvecs, f)
            else:
                with open(qfeas_sv, 'rb') as f:
                    qvecs = pickle.load(f)

        print('>> {}: Evaluating...'.format(dataset))
        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        #qvecs = qvecs[:, 0].reshape(-1, 1)
        #args.query = True
        # search, rank, and print
        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranksw = np.argsort(-scores, axis=0)
            if args.query is None:
                #compute_map_and_print(dataset + ' + whiten', ranksw, cfg['gnd'])
                compute_map_and_print1(dataset + ' + whiten', ranksw,
                                       cfg['gnd'])

                scores = np.dot(vecs.T, qvecs)
                ranks = np.argsort(-scores, axis=0)
                # compute_map_and_print(dataset, ranks, cfg['gnd'])
                compute_map_and_print1(dataset, ranks, cfg['gnd'])
            else:
                a = []
                for i in ranksw:
                    a.append(
                        os.path.join(cfg['dir_images'], cfg['imlist'][i[0]]) +
                        cfg['ext'])
                print(a[:10])
                result = cfg['dir_data'] + '_result'
                with open(result + '.pkl', 'wb') as f:
                    pickle.dump(a[:10], f)
        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
Esempio n. 25
0
def test(datasets, net, wandb_enabled=False, epoch=-1):
    
    global global_step

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        
        # learning whitening 
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, image_size, transform, bbxs)  # implemented with torch.no_grad
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    # download_train(get_data_root())
    # download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False
        net_params['multi_layer_cat'] = state['meta']['multi_layer_cat']

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])
        
        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']
        
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        
        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    print(">> image size: {}".format(args.image_size))
    ms = list(eval(args.multiscale))
    if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))            
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            
            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
            
            if len(ms)>1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))
                
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
                
                # learning whitening 
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        print('>> not use bbxs...')
        bbxs = None

        # key_url_list = ParseData(os.path.join(get_data_root(), 'index.csv'))
        # index_image_path = os.path.join(get_data_root(), 'resize_index_image')
        # images = [os.path.join(index_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # key_url_list = ParseData(os.path.join(get_data_root(), 'test.csv'))
        # test_image_path = os.path.join(get_data_root(), 'resize_test_image')
        # qimages = [os.path.join(test_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # csvfile = open(os.path.join(get_data_root(), 'index_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # images = [line[:1][0] for line in csvreader]
        #
        # csvfile = open(os.path.join(get_data_root(), 'test_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # qimages = [line[:1][0] for line in csvreader]

        # bbxs = None
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        # vecs = torch.randn(2048, 5063)
        # vecs = torch.randn(2048, 4993)

        # hxq modified
        # bbxs = None
        # print('>> set no bbxs...')
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)

        # hxq modified, test add features map for retrieval
        # vecs = [vecs[i].numpy() for i in range(len(vecs))]
        # qvecs_temp = np.zeros((qvecs[0].shape[0], len(qvecs)))
        # for i in range(len(qvecs)):
        #     qvecs_temp[:, i] = qvecs[i][:, 0].numpy()
        # qvecs = qvecs_temp
        #
        # scores = np.zeros((len(vecs), qvecs.shape[-1]))
        # for i in range(len(vecs)):
        #     scores[i, :] = np.amax(np.dot(vecs[i].T, qvecs), 0)

        ranks = np.argsort(-scores, axis=0)
        mismatched_info = compute_map_and_print(dataset, ranks, cfg['gnd'], kappas=[1, 5, 10, 100])

        # hxq added
        show_false_img = False
        if show_false_img == True:
            print('>> Save mismatched image tuple...')
            for info in mismatched_info:
                mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            mismatched_info = compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

            # hxq added
            # show_false_img = False
            if show_false_img == True:
                print('>> Save mismatched image tuple...')
                for info in mismatched_info:
                    mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
Esempio n. 27
0
def testOxfordParisHolidays(net, eConfig):

    #datasets = eConfig['test-datasets'].split(',')
    #results = []
    #
    #for dataset in datasets:
    #    results.append((dataset, np.random.rand(1)[0]))
    #
    #return results

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if (eConfig['multiscale']):
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if eConfig['whitening']:

        start = time.time()

        print('>> {}: Learning whitening...'.format(eConfig['test-whiten']))

        # loading db
        db_root = os.path.join(get_data_root(), 'train',
                               eConfig['test-whiten'])
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root,
                             '{}-whiten.pkl'.format(eConfig['test-whiten']))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(eConfig['test-whiten']))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(eConfig['test-whiten']))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(eConfig['test-whiten'],
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = eConfig['test-datasets'].split(',')
    results = []

    for dataset in datasets:
        start = time.time()

        if (dataset != 'holidays' and dataset != 'rholidays'):
            print('>> {}: Extracting...'.format(dataset))

            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

            if (dataset == 'oxford105k' or dataset == 'paris106k'):
                images.extend(cfg['distractors'])

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net,
                                   images,
                                   image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    image_size,
                                    transform,
                                    bbxs,
                                    ms=ms,
                                    msp=msp)
            print('>> {}: Evaluating...'.format(dataset))

            # convert to numpy
            vecs = vecs.numpy()
            qvecs = qvecs.numpy()

            # search, rank, and print
            scores = np.dot(vecs.T, qvecs)
            ranks = np.argsort(-scores, axis=0)
            results.append(
                compute_map_and_print(
                    dataset +
                    ('+ multiscale' if eConfig['multiscale'] else ''), ranks,
                    cfg['gnd']))

            if Lw is not None:
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
                qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks = np.argsort(-scores, axis=0)
                results.append(
                    compute_map_and_print(dataset + ' + whiten', ranks,
                                          cfg['gnd']))

        else:
            results.append(testHolidays(net, eConfig, dataset, Lw))

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))

    return results
Esempio n. 28
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        net = load_network(args.network_path)

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        net = load_offtheshelf(args.network_offtheshelf)

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1./math.sqrt(2), 1./2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            if args.whitening == "scores":
                # special logic for scores database
                from score_retrieval.exports import (
                    db,
                    train_images as images,
                )

            else:
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == "scores":
            # Special added logic to handle loading our score dataset
            from score_retrieval.exports import (
                images,
                qimages,
                gnd,
            )

            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp)

        else:
            # extract ground truth
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            gnd = cfg['gnd']

            # prepare config structure for the test dataset
            images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
            bbxs = [tuple(gnd[i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)

        # validation
        print(">> {}: gnd stats: {}, {}, {}".format(
            dataset,
            len(gnd),
            [len(x["ok"]) for x in gnd[10:]],
            [len(x["junk"]) for x in gnd[10:]],
        ))
        print(">> {}: image stats: {}, {}".format(dataset, len(images), len(qimages)))
        assert len(gnd) == len(qimages), (len(gnd), len(qimages))

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        print(">> {}: qvecs.shape: {}".format(dataset, qvecs.shape))

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        print(">> {}: ranks (shape {}) head: {}".format(dataset, ranks.shape, ranks[10:,10:]))
        print(">> {}: gnd head: {}".format(dataset, gnd[5:]))

        # Compute and print metrics
        compute_acc(ranks, gnd, dataset)
        compute_mrr(ranks, gnd, dataset)
        compute_map_and_print(dataset, ranks, gnd)

        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_acc(ranks, gnd, dataset + " + whiten")
            compute_mrr(ranks, gnd, dataset + " + whiten")
            compute_map_and_print(dataset + " + whiten", ranks, gnd)

        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))