def as_quick_fix(self): """Build a QuickFix that would resolve this error.""" # Even if there are multiple wanted_types, let's only show the user # a single QuickFix. It's less noisy that way. (Revisit later if # this becomes an issue.) # # ... ignore self.found_type for now because [2019-04-10] none of # our converters are split by input type. # 'names': user-visible colnames names = ', '.join([f'"{c}"' for c in self.column_names]) # 'colnames': param value for the module params = {'colnames': self.column_names} if 'text' in self.wanted_types: return QuickFix(f'Convert {names} to Text', 'prependModule', ['converttotext', params]) elif 'number' in self.wanted_types: return QuickFix(f'Convert {names} to Numbers', 'prependModule', ['converttexttonumber', params]) elif 'datetime' in self.wanted_types: return QuickFix(f'Convert {names} to Dates & Times', 'prependModule', ['convert-date', params]) else: raise RuntimeError( f'Unhandled wanted_types: {self.wanted_types}')
def test_coerce_dict_with_quickfix_dict(self): dataframe = DataFrame({'A': [1, 2]}) quick_fix = QuickFix('Hi', 'prependModule', ['texttodate', { 'column': 'created_at' }]) result = ProcessResult.coerce({ 'dataframe': dataframe, 'error': 'an error', 'json': { 'foo': 'bar' }, 'quick_fixes': [ { 'text': 'Hi', 'action': 'prependModule', 'args': ['texttodate', { 'column': 'created_at' }], }, ] }) expected = ProcessResult(dataframe, 'an error', json={'foo': 'bar'}, quick_fixes=[quick_fix]) self.assertEqual(result, expected)
def test_assign_and_save(self): result = ProcessResult( dataframe=pandas.DataFrame({"a": [1]}), error="err", json={"foo": "bar"}, quick_fixes=[QuickFix("X", "prependModule", ["x"])], columns=[Column("a", ColumnType.NUMBER("{:,d}"))], ) self.wf_module.cache_render_result(self.delta.id, result) cached = self.wf_module.cached_render_result self.assertEqual(cached.wf_module_id, self.wf_module.id) self.assertEqual(cached.delta_id, self.delta.id) self.assertEqual(cached.result, result) self.assertEqual( cached.parquet_key, ( f"wf-{self.workflow.id}/wfm-{self.wf_module.id}" f"/delta-{self.delta.id}.dat" ), ) db_wf_module = WfModule.objects.get(id=self.wf_module.id) from_db = db_wf_module.cached_render_result self.assertEqual(from_db.wf_module_id, self.wf_module.id) self.assertEqual(cached.delta_id, self.delta.id) self.assertEqual(from_db.result, result)
def test_assign_and_save(self): result = ProcessResult( dataframe=pandas.DataFrame({'a': [1]}), error='err', json={'foo': 'bar'}, quick_fixes=[QuickFix('X', 'prependModule', ['x'])], columns=[Column('a', ColumnType.NUMBER('{:,d}'))] ) self.wf_module.cache_render_result(self.delta.id, result) cached = self.wf_module.cached_render_result self.assertEqual(cached.wf_module_id, self.wf_module.id) self.assertEqual(cached.delta_id, self.delta.id) self.assertEqual(cached.result, result) self.assertEqual( cached.parquet_key, ( f'wf-{self.workflow.id}/wfm-{self.wf_module.id}' f'/delta-{self.delta.id}.dat' ) ) db_wf_module = WfModule.objects.get(id=self.wf_module.id) from_db = db_wf_module.cached_render_result self.assertEqual(from_db.wf_module_id, self.wf_module.id) self.assertEqual(cached.delta_id, self.delta.id) self.assertEqual(from_db.result, result)
def test_coerce_dict_with_quickfix_dict(self): dataframe = pd.DataFrame({"A": [1, 2]}) quick_fix = QuickFix("Hi", "prependModule", ["texttodate", { "column": "created_at" }]) result = ProcessResult.coerce({ "dataframe": dataframe, "error": "an error", "json": { "foo": "bar" }, "quick_fixes": [{ "text": "Hi", "action": "prependModule", "args": ["texttodate", { "column": "created_at" }], }], }) expected = ProcessResult(dataframe, "an error", json={"foo": "bar"}, quick_fixes=[quick_fix]) self.assertEqual(result, expected)
def from_wf_module(wf_module: "WfModule") -> "CachedRenderResult": """ Read the CachedRenderResult or None from a WfModule. This does not read the _result_ from disk. If you want a "snapshot in time" of the ProcessResult you need a lock, like this: # Lock the workflow, making sure we don't overwrite data with workflow.cooperative_lock(): # Read from database cached_result = wf_module.get_cached_render_result() # Read from disk cached_result.result (There's not much point in reading from disk within this method, because a "snapshot in time" is impossible anyway: half the data is in the database and the other half is on disk.) """ if wf_module.cached_render_result_delta_id is None: return None delta_id = wf_module.cached_render_result_delta_id status = wf_module.cached_render_result_status error = wf_module.cached_render_result_error columns = wf_module.cached_render_result_columns nrows = wf_module.cached_render_result_nrows # TODO [2019-01-24] once we've deployed and wiped all caches, nix this # 'columns' check and assume 'columns' is always set when we get here if columns is None: # this cached value is stale because _Workbench_ has been updated # and doesn't support it any more return None # cached_render_result_json is sometimes a memoryview json_bytes = bytes(wf_module.cached_render_result_json) if json_bytes: json_dict = json.loads(json_bytes) else: json_dict = None quick_fixes = wf_module.cached_render_result_quick_fixes if not quick_fixes: quick_fixes = [] # Coerce from dict to QuickFixes quick_fixes = [QuickFix(**qf) for qf in quick_fixes] ret = CachedRenderResult( workflow_id=wf_module.workflow_id, wf_module_id=wf_module.id, delta_id=delta_id, status=status, error=error, json=json_dict, quick_fixes=quick_fixes, table_shape=TableShape(nrows, columns), ) # Keep in mind: ret.result has not been loaded yet. It might not exist # when we do try reading it. return ret
def test_as_quick_fixes(self): err = PromptingError([ PromptingError.WrongColumnType(['A'], 'text', frozenset({'number'})), PromptingError.WrongColumnType(['B', 'C'], 'datetime', frozenset({'number'})), ]) result = err.as_quick_fixes() self.assertEqual(result, [ QuickFix('Convert "A" to Numbers', 'prependModule', ['converttexttonumber', { 'colnames': ['A'] }]), QuickFix('Convert "B", "C" to Numbers', 'prependModule', ['converttexttonumber', { 'colnames': ['B', 'C'] }]), ])
def test_quick_fixes_convert_to_text(self): err = PromptingError([ PromptingError.WrongColumnType(["A", "B"], None, frozenset({"text"})) ]) quick_fixes_result = err.as_quick_fixes() self.assertEqual( quick_fixes_result, [ QuickFix( "Convert to Text", "prependModule", ["converttotext", { "colnames": ["A", "B"] }], ) ], ) error_result = err.as_error_str() self.assertEqual(error_result, "The columns “A” and “B” must be converted to Text.")