Esempio n. 1
0
        def as_quick_fix(self):
            """Build a QuickFix that would resolve this error."""
            # Even if there are multiple wanted_types, let's only show the user
            # a single QuickFix. It's less noisy that way. (Revisit later if
            # this becomes an issue.)
            #
            # ... ignore self.found_type for now because [2019-04-10] none of
            # our converters are split by input type.

            # 'names': user-visible colnames
            names = ', '.join([f'"{c}"' for c in self.column_names])
            # 'colnames': param value for the module
            params = {'colnames': self.column_names}

            if 'text' in self.wanted_types:
                return QuickFix(f'Convert {names} to Text', 'prependModule',
                                ['converttotext', params])
            elif 'number' in self.wanted_types:
                return QuickFix(f'Convert {names} to Numbers', 'prependModule',
                                ['converttexttonumber', params])
            elif 'datetime' in self.wanted_types:
                return QuickFix(f'Convert {names} to Dates & Times',
                                'prependModule', ['convert-date', params])
            else:
                raise RuntimeError(
                    f'Unhandled wanted_types: {self.wanted_types}')
Esempio n. 2
0
 def test_coerce_dict_with_quickfix_dict(self):
     dataframe = DataFrame({'A': [1, 2]})
     quick_fix = QuickFix('Hi', 'prependModule',
                          ['texttodate', {
                              'column': 'created_at'
                          }])
     result = ProcessResult.coerce({
         'dataframe':
         dataframe,
         'error':
         'an error',
         'json': {
             'foo': 'bar'
         },
         'quick_fixes': [
             {
                 'text': 'Hi',
                 'action': 'prependModule',
                 'args': ['texttodate', {
                     'column': 'created_at'
                 }],
             },
         ]
     })
     expected = ProcessResult(dataframe,
                              'an error',
                              json={'foo': 'bar'},
                              quick_fixes=[quick_fix])
     self.assertEqual(result, expected)
Esempio n. 3
0
    def test_assign_and_save(self):
        result = ProcessResult(
            dataframe=pandas.DataFrame({"a": [1]}),
            error="err",
            json={"foo": "bar"},
            quick_fixes=[QuickFix("X", "prependModule", ["x"])],
            columns=[Column("a", ColumnType.NUMBER("{:,d}"))],
        )
        self.wf_module.cache_render_result(self.delta.id, result)

        cached = self.wf_module.cached_render_result
        self.assertEqual(cached.wf_module_id, self.wf_module.id)
        self.assertEqual(cached.delta_id, self.delta.id)
        self.assertEqual(cached.result, result)

        self.assertEqual(
            cached.parquet_key,
            (
                f"wf-{self.workflow.id}/wfm-{self.wf_module.id}"
                f"/delta-{self.delta.id}.dat"
            ),
        )

        db_wf_module = WfModule.objects.get(id=self.wf_module.id)
        from_db = db_wf_module.cached_render_result
        self.assertEqual(from_db.wf_module_id, self.wf_module.id)
        self.assertEqual(cached.delta_id, self.delta.id)
        self.assertEqual(from_db.result, result)
    def test_assign_and_save(self):
        result = ProcessResult(
            dataframe=pandas.DataFrame({'a': [1]}),
            error='err',
            json={'foo': 'bar'},
            quick_fixes=[QuickFix('X', 'prependModule', ['x'])],
            columns=[Column('a', ColumnType.NUMBER('{:,d}'))]
        )
        self.wf_module.cache_render_result(self.delta.id, result)

        cached = self.wf_module.cached_render_result
        self.assertEqual(cached.wf_module_id, self.wf_module.id)
        self.assertEqual(cached.delta_id, self.delta.id)
        self.assertEqual(cached.result, result)

        self.assertEqual(
            cached.parquet_key,
            (
                f'wf-{self.workflow.id}/wfm-{self.wf_module.id}'
                f'/delta-{self.delta.id}.dat'
            )
        )

        db_wf_module = WfModule.objects.get(id=self.wf_module.id)
        from_db = db_wf_module.cached_render_result
        self.assertEqual(from_db.wf_module_id, self.wf_module.id)
        self.assertEqual(cached.delta_id, self.delta.id)
        self.assertEqual(from_db.result, result)
Esempio n. 5
0
 def test_coerce_dict_with_quickfix_dict(self):
     dataframe = pd.DataFrame({"A": [1, 2]})
     quick_fix = QuickFix("Hi", "prependModule",
                          ["texttodate", {
                              "column": "created_at"
                          }])
     result = ProcessResult.coerce({
         "dataframe":
         dataframe,
         "error":
         "an error",
         "json": {
             "foo": "bar"
         },
         "quick_fixes": [{
             "text": "Hi",
             "action": "prependModule",
             "args": ["texttodate", {
                 "column": "created_at"
             }],
         }],
     })
     expected = ProcessResult(dataframe,
                              "an error",
                              json={"foo": "bar"},
                              quick_fixes=[quick_fix])
     self.assertEqual(result, expected)
Esempio n. 6
0
    def from_wf_module(wf_module: "WfModule") -> "CachedRenderResult":
        """
        Read the CachedRenderResult or None from a WfModule.

        This does not read the _result_ from disk. If you want a "snapshot in
        time" of the ProcessResult you need a lock, like this:

            # Lock the workflow, making sure we don't overwrite data
            with workflow.cooperative_lock():
                # Read from database
                cached_result = wf_module.get_cached_render_result()
                # Read from disk
                cached_result.result

        (There's not much point in reading from disk within this method,
        because a "snapshot in time" is impossible anyway: half the data is in
        the database and the other half is on disk.)
        """
        if wf_module.cached_render_result_delta_id is None:
            return None

        delta_id = wf_module.cached_render_result_delta_id
        status = wf_module.cached_render_result_status
        error = wf_module.cached_render_result_error
        columns = wf_module.cached_render_result_columns
        nrows = wf_module.cached_render_result_nrows

        # TODO [2019-01-24] once we've deployed and wiped all caches, nix this
        # 'columns' check and assume 'columns' is always set when we get here
        if columns is None:
            # this cached value is stale because _Workbench_ has been updated
            # and doesn't support it any more
            return None

        # cached_render_result_json is sometimes a memoryview
        json_bytes = bytes(wf_module.cached_render_result_json)
        if json_bytes:
            json_dict = json.loads(json_bytes)
        else:
            json_dict = None

        quick_fixes = wf_module.cached_render_result_quick_fixes
        if not quick_fixes:
            quick_fixes = []
        # Coerce from dict to QuickFixes
        quick_fixes = [QuickFix(**qf) for qf in quick_fixes]

        ret = CachedRenderResult(
            workflow_id=wf_module.workflow_id,
            wf_module_id=wf_module.id,
            delta_id=delta_id,
            status=status,
            error=error,
            json=json_dict,
            quick_fixes=quick_fixes,
            table_shape=TableShape(nrows, columns),
        )
        # Keep in mind: ret.result has not been loaded yet. It might not exist
        # when we do try reading it.
        return ret
Esempio n. 7
0
 def test_as_quick_fixes(self):
     err = PromptingError([
         PromptingError.WrongColumnType(['A'], 'text',
                                        frozenset({'number'})),
         PromptingError.WrongColumnType(['B', 'C'], 'datetime',
                                        frozenset({'number'})),
     ])
     result = err.as_quick_fixes()
     self.assertEqual(result, [
         QuickFix('Convert "A" to Numbers', 'prependModule',
                  ['converttexttonumber', {
                      'colnames': ['A']
                  }]),
         QuickFix('Convert "B", "C" to Numbers', 'prependModule',
                  ['converttexttonumber', {
                      'colnames': ['B', 'C']
                  }]),
     ])
Esempio n. 8
0
    def test_quick_fixes_convert_to_text(self):
        err = PromptingError([
            PromptingError.WrongColumnType(["A", "B"], None,
                                           frozenset({"text"}))
        ])
        quick_fixes_result = err.as_quick_fixes()
        self.assertEqual(
            quick_fixes_result,
            [
                QuickFix(
                    "Convert to Text",
                    "prependModule",
                    ["converttotext", {
                        "colnames": ["A", "B"]
                    }],
                )
            ],
        )

        error_result = err.as_error_str()
        self.assertEqual(error_result,
                         "The columns “A” and “B” must be converted to Text.")