Esempio n. 1
0
def test_PriceEstimator_create_prices_lstsq_soln_1():
    "Test creation of price records with real data."
    from clair.coredata import DataStore
    from clair.prices import PriceEstimator
    print "start"
    
    data = DataStore()
    data.read_data(relative("../../example-data"))
    
    #Use all data as test data
#    listings = data.listings
    product_ids = [p.id for p in data.products 
                   if not p.id.startswith("xxx-unknown")]
#    #Take a small amount of test data.
    listings = data.listings.ix[0:200]
#    product_ids = [u'nikon-d70', u'nikon-d90', u'nikon-sb-24', u'nikon-sb-26', 
#                   u'nikon-18-70-f/3.5-4.5--1', u'nikon-18-105-f/3.5-5.6--1',
#                   u'nikon-28-85-f/3.5-4.5--1']
    print listings
#    print listings.to_string(columns=["products", "price"])
    
    estimator = PriceEstimator()
    
    #Create matrix and vectors for linear least square
    matrix, listing_prices, listing_ids, product_ids = \
        estimator.compute_product_occurrence_matrix(listings, product_ids)
#    print
#    print "matrix:\n", matrix
#    print "matrix rank:", np.linalg.matrix_rank(matrix)
#    print "number products:", len(product_ids)
#    print "listing_prices:\n", listing_prices
#    print "listing_ids:\n", listing_ids
#    print "product_ids:\n", product_ids
    
    #Compute average product prices
    product_prices, good_rows, good_cols, problem_products = \
                estimator.solve_prices_lstsq(matrix, listing_prices, 
                                                     listing_ids, product_ids)
    
    #Create price records
    prices = estimator.create_prices_lstsq_soln(matrix, 
                                     listing_prices, listing_ids, 
                                     product_prices, product_ids,
                                     good_rows, good_cols, listings)
#    print prices.to_string()
    
    #TODO: assertions
    print "finshed"
Esempio n. 2
0
def test_PriceEstimator_create_prices_lstsq_soln_2():
    """
    Test creation of price records from solution of linear 
    least square problem, with artificial data.
    """
    from clair.prices import PriceEstimator
    
    def print_vals():
        print "matrix:\n", matrix
        print "matrix rank:", np.linalg.matrix_rank(matrix)
        print "number products:", len(product_ids)
        print "listing_prices:\n", listing_prices
        print "listing_ids:\n", listing_ids
        print "product_ids:\n", product_ids
        print "product_prices:\n", product_prices
        print "real_prices:\n", real_prices
        
    print "start"
    
    estimator = PriceEstimator()
    
    #Listing IDs, unimportant in this test.
    listing_ids = array(["l1", "l2", "l3", "l4", "l5", 
                        "l6", "l7", "l8", "l9", "l10"])
    
    #Product IDs, and "real" prices for checking errors
    product_ids = array(["a", "b", "c", "d", "e"])
    real_prices = array([500, 200, 100, 50.,  5.])
    
    print "Matrix has full rank, no noise ---------------------------------"
    #Matrix that represents the listings, each row is a listing
    matrix =     array([[ 1.,  0.,  0.,  0.,  0.,],
                        [ 1.,  0.,  0.,  0.,  0.,],
                        [ 0.,  1.,  0.,  0.,  0.,],
                        [ 0.,  1.,  0.,  0.,  0.,],
                        [ 1.,  1.,  0.,  0.,  0.,],
                        [ 1.,  0.,  1.,  0.,  0.,],
                        [ 0.,  0.,  1.,  1.,  0.,],
                        [ 0.,  0.,  1.,  0.,  1.,],
                        [ 0.,  0.,  0.,  1.,  1.,],
                        [ 1.,  1.,  1.,  1.,  1.,],
                        ])
    #compute listing prices from the real prices
    listing_prices = dot(matrix, real_prices)
    #Compute the product prices
    product_prices, good_rows, good_cols, problem_products = \
                estimator.solve_prices_lstsq(matrix, listing_prices, 
                                             listing_ids, product_ids)
    print_vals()
    
    prices = estimator.create_prices_lstsq_soln(matrix, 
                                                listing_prices, listing_ids,
                                                product_prices, product_ids,
                                                good_cols, good_rows)
    print "prices:\n", prices.to_string()
    
    true_prices = prices["price"] / prices["condition"]
    prices_a = true_prices[prices["product"] == "a"]
    prices_b = true_prices[prices["product"] == "b"]
    prices_c = true_prices[prices["product"] == "c"]
    prices_d = true_prices[prices["product"] == "d"]
    prices_e = true_prices[prices["product"] == "e"]
    
    np.testing.assert_allclose(prices_a, 500)
    np.testing.assert_allclose(prices_b, 200)
    np.testing.assert_allclose(prices_c, 100)
    np.testing.assert_allclose(prices_d, 50)
    np.testing.assert_allclose(prices_e, 5)
        
    print "Matrix is 1*1 (but has full rank, no noise) ------------------------"
    #Listing IDs, unimportant in this test.
    listing_ids = array(["l1"])
    
    #Product IDs, and "real" prices for checking errors
    product_ids = array(["a"])
    real_prices = array([500])
    
    #Matrix that represents the listings, each row is a listing
    matrix =     array([[0.7]])
    #compute listing prices from the real prices
    listing_prices = dot(matrix, real_prices)
    #Compute the product prices
    product_prices, good_rows, good_cols, problem_products = \
                estimator.solve_prices_lstsq(matrix, listing_prices, 
                                             listing_ids, product_ids)
    print_vals()
    
    prices = estimator.create_prices_lstsq_soln(matrix, 
                                                listing_prices, listing_ids,
                                                product_prices, product_ids,
                                                good_cols, good_rows)
    print "prices:\n", prices.to_string()
    
    true_prices = prices["price"] / prices["condition"]
    prices_a = true_prices[prices["product"] == "a"]
    
    np.testing.assert_allclose(prices_a, 500)