from matplotlib import pyplot as plt import numpy as np from clase_graficar import Graficar from clase_crear_lienzo import Crear_lienzo import EC_kinetics as ec_data import pHkinetics_datos as ph_data ##Instancias de clases ph_data = ph_data.ph_kinetics.drop(0) ec_data = ec_data.ec_kinetics.drop(0) lienzo = Crear_lienzo(12, 6, 0, 0) graficar = Graficar(15, 14, 15, 13, 13, 12) ec_data = ec_data ph_data = ph_data ##Varibles comunes marker = '.' linewidth = 0.5 elinewidth = 0.25 capsize = 2 capthick = 0.5 markersize = 5 ylim = (2, 10) ##Crear lienzo del gráfico fig = lienzo.crear_figura(left=0.07, bottom=0.2, right=0.99, top=0.92) time = ec_data['Monitoring time (days)'][1:6] ###Batch 1
import pandas as pd import numpy as np import matplotlib.pyplot as plt from clase_crear_lienzo import Crear_lienzo from clase_gestionar_datos import Gestionar_datos from clase_graficar import Graficar import Morphology_graphs as Morphology from clase_crear_lienzo import Crear_lienzo morpho = Morphology graficar = Graficar(14, 16, 13, 13, 13, 10) lienzo = Crear_lienzo(20, 12, 0.1, 0.3) treatments = ['S0', 'S1', 'S2', 'S3', 'S4', 'S5'] x = np.arange(len(treatments)) width = 0.25 error_kw = { "elinewidth": 0.5, "capsize": 2, "capthick": 0.5, "barsabove": True, } linewidth = 1.5 y_lim_length = (0, 800) y_lim_width = (0, 13) y_lim_spiralization = (0, 180) y_lim_helix = (0, 100) # fig = plt.figure(figsize=(20, 12)) # fig.subplots_adjust(left=0.08, bottom=0.2, right=0.98, top=0.92) ##################################Length#################################################################
from matplotlib import pyplot as plt import numpy as np from clase_graficar import Graficar from clase_crear_lienzo import Crear_lienzo import EC_kinetics as ec_data import pHkinetics_datos as ph_data ##Instancias de clases lienzo = Crear_lienzo(12, 6, 0.1, 0.3) graficar = Graficar(12, 12, 10, 10, 10, 10) ec_data = ec_data ph_data = ph_data ##Varibles comunes treatments = ['DW1', 'DW2', 'DW3', 'DW4', 'DW5', 'DW6'] marker = '.' linewidth = 0.5 elinewidth = 0.25 capsize = 2 capthick = 0.5 color_dww = '#2B2B2B' color_sup1 = '#6A6A6A' color_sup2 = '#9D9D9D' color_sup4 = '#B9B9B9' color_sup5 = '#C3C3C3' color_sup3 = '#D7D7D7' ##Crear lienzo del gráfico fig = lienzo.crear_figura(left=0.03, bottom=0.2, right=0.98, top=0.92) ##Gráfico EC
x_lim = (0, 12) batch1_color = '#6A6A6A' batch2_color = '#9D9D9D' batch3_color = '#D7D7D7' treatments = ['DW', 'DW1', 'DW2', 'DW3', 'DW4', 'DW5'] barwidth = 0.25 error_kw = {"elinewidth": 0.5, "capsize": 2, "capthick": 0.5, "barsabove": True, } ##Instanciar clases lienzo = Crear_lienzo(10, 6, 0.5, 0.5) excel = Gestionar_datos() graficar = Graficar(11, 11, 14, 12, 12, 10) ##Crear lienzo del gráfico fig = lienzo.crear_figura() ##Leer excel spiralization_dataframe = excel.leer_excel('D:\Cindy\Ingeniería\Maestría\Resultados\R2L\Summup data.xlsx', 'Spiralization_triplicate') ##Arrays lote 1 ##ARL Lote 1 arl1_day12 = excel.crear_array(spiralization_dataframe, 'ARL_12', 0, 20) arl_prom_1 = np.average(arl1_day12) arlsd_1 = np.std(arl1_day12, ddof=sample_sd) arlsem_1 = sem(arl1_day12)
import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import Figure import matplotlib.pylab as pylab from scipy.stats import sem from clase_gestionar_datos import Gestionar_datos from clase_graficar import Graficar from clase_crear_lienzo import Crear_lienzo ##Instancias de clases excel = Gestionar_datos() lienzo = Crear_lienzo(12, 6, 0.1, 0.3) graficar = Graficar(15, 15, 13, 13, 13, 11) ##Varibles comunes treatments = ['S0', 'S1', 'S2', 'S3', 'S4', 'S5'] barwidth = 0.25 batch1_color = '#6A6A6A' batch2_color = '#9D9D9D' batch3_color = '#D7D7D7' #Leer datos de excel pmax_df = excel.leer_excel( 'D:\Cindy\Ingeniería\Maestría\Resultados\R2L\Summup data.xlsx', 'pmax') batch = pmax_df['Batch'] pmax = pmax_df.drop(columns=['Batch']) # pmax_arl = np.array(list(pmax['ARL'])) # pmax_arl_mean = np.mean(pmax_arl)
marker_linewidth = 0.2 marker_size = 100 ylim = (100, 600) xlim = (1.25, 1.9) ypad = 9 xpad = 4 marker_scatter = 'o' marker_dispersion = 's' line_style = '--' norm_nitrogen = mpl.colors.Normalize(vmin=0, vmax=7) norm_phosphorus = mpl.colors.Normalize(vmin=0, vmax=0.5) #Instanciar clases lienzo = Crear_lienzo(15, 5, 0.5, 0.2) excel = Gestionar_datos() graficar = Graficar(12, 12, 12, 10, 10, 15) ##Crear lienzo del gráfico fig = lienzo.crear_figura() ##Leer excel length_data = excel.leer_excel( 'D:\Cindy\Ingeniería\Maestría\Resultados\R2L\AnalisisN-P-C-12.xlsx', 'Graph data length') ##Data carbon = np.array(excel.crear_lista(length_data, 'total carbon', 0, 15)) carbon_nitrogen = np.array( excel.crear_lista(length_data, 'nitrogen_carbon', 0, 15)) carbon_phosphorus = np.array( excel.crear_lista(length_data, 'phosphorus_carbon', 0, 15))
from matplotlib.pyplot import Figure import matplotlib.pylab as pylab from clase_crear_lienzo import Crear_lienzo from clase_gestionar_datos import Gestionar_datos from clase_graficar import Graficar #Variables comunes days = [3, 6, 9, 12] sample_sd = 1 y_lim = (0, 800) x_lim = (0, 12) ##Instanciar clases lienzo = Crear_lienzo(15, 6, 0.5, 0.5) excel = Gestionar_datos() graficar = Graficar(11, 11, 14, 12, 12, 10) ##Crear lienzo del gráfico fig = lienzo.crear_figura() ##Leer excel length_dataframe = excel.leer_excel('D:\Cindy\Ingeniería\Maestría\Resultados\R2L\Summup data.xlsx', 'Length_triplicate') ##Arrays lote 1 ##ARL Lote 1 arl1_day3 = excel.crear_array(length_dataframe, 'ARL_3', 0, 20) arl1_day6 = excel.crear_array(length_dataframe, 'ARL_6', 0, 20) arl1_day9 = excel.crear_array(length_dataframe, 'ARL_9', 0, 20) arl1_day12 = excel.crear_array(length_dataframe, 'ARL_12', 0, 20)
from matplotlib import cm #Variables comunes line_color = 'black' marker = 'o' marker_edge = 'black' marker_linewidth = 0.2 marker_size = 100 ylim = (0, 900) ypad = 9 xpad = 4 #Instanciar clases lienzo = Crear_lienzo(15, 15, 0.6, 0.4) excel = Gestionar_datos() graficar = Graficar(13, 13, 16, 14, 12, 12) ##Crear lienzo del gráfico fig = lienzo.crear_figura() ##Leer excel correlacion_data = excel.leer_excel('D:\Cindy\Ingeniería\Maestría\Resultados\R2L\AnalisisN-P-C.xlsx', 'Graph data') ##Carbon data carbon = excel.crear_lista(correlacion_data, 'Total carbon', 0, 15) carbon_biomass = excel.crear_lista(correlacion_data, ' Biomass carbon', 0, 15) carbon_nitrogen = excel.crear_lista(correlacion_data, 'Carbon_Nitrogen', 0, 15) carbon_phosphorus = excel.crear_lista(correlacion_data, 'Carbon_Phosphorus', 0, 15) ##Nitrogen data nitrogen = excel.crear_lista(correlacion_data, 'Total nitrogen', 0, 15)
from numpy.lib.arraypad import pad import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import Figure import matplotlib.pylab as pylab from clase_crear_lienzo import Crear_lienzo from clase_gestionar_datos import Gestionar_datos from clase_graficar import Graficar #Instanciar clases #lienzo = Crear_lienzo(10, 20, 0.6, 0.4) lienzo = Crear_lienzo(30, 12, 0, 0) graficar = Graficar(34, 34, 34, 32, 32, 2) excel = Gestionar_datos() #Parámetros comunes ylim = (0, 1600) ypad = 2 xpad = 7 xticks = [0, 3, 6, 9, 12] yticks = [0, 200, 400, 600, 800, 1000, 1200, 1400, 1600] font_size = 16 markersize = 13 ##Crear lienzo del gráfico # lienzo.largo_fig = 30 fig = lienzo.crear_figura(left=0.06, bottom=0.2, right=0.98, top=0.92) ##Leer excel
batch1_color = '#6A6A6A' batch2_color = '#9D9D9D' batch3_color = '#D7D7D7' treatments = ['S0', 'S1', 'S2', 'S3', 'S4', 'S5'] barwidth = 0.25 error_kw = { "elinewidth": 0.5, "capsize": 2, "capthick": 0.5, "barsabove": True, } ##Instanciar clases lienzo = Crear_lienzo(15, 12, 0.2, 0.2) excel = Gestionar_datos() graficar = Graficar(11, 11, 14, 12, 12, 10) ##Crear lienzo del gráfico fig = lienzo.crear_figura() ####################################Length############################################## ##Leer excel length_dataframe = excel.leer_excel( 'D:\Cindy\Ingeniería\Maestría\Resultados\R2L\Summup data.xlsx', 'Length_triplicate') ##Arrays lote 1 ##ARL Lote 1 s01_day12_length = excel.crear_array(length_dataframe, 'ARL_12', 0, 20) s0_prom_1_length = np.nanmean(s01_day12_length)