def get_valid_performance(DATA,
                          MASK,
                          in_parser,
                          out_itr,
                          eval_time=None,
                          MAX_VALUE=-99,
                          OUT_ITERATION=5,
                          seed=1234):
    ##### DATA & MASK
    (data, time, label) = DATA
    (mask1, mask2) = MASK

    x_dim = np.shape(data)[1]
    _, num_Event, num_Category = np.shape(
        mask1)  # dim of mask1: [subj, Num_Event, Num_Category]

    ACTIVATION_FN = {'relu': tf.nn.relu, 'elu': tf.nn.elu, 'tanh': tf.nn.tanh}

    ##### HYPER-PARAMETERS
    mb_size = in_parser['mb_size']

    iteration = in_parser['iteration']

    keep_prob = in_parser['keep_prob']
    lr_train = in_parser['lr_train']

    alpha = in_parser['alpha']  #for log-likelihood loss
    beta = in_parser['beta']  #for ranking loss
    gamma = in_parser['gamma']  #for RNN-prediction loss
    parameter_name = 'a' + str('%02.0f' % (10 * alpha)) + 'b' + str(
        '%02.0f' % (10 * beta)) + 'c' + str('%02.0f' % (10 * gamma))

    initial_W = tf.contrib.layers.xavier_initializer()

    ##### MAKE DICTIONARIES
    # INPUT DIMENSIONS
    input_dims = {
        'x_dim': x_dim,
        'num_Event': num_Event,
        'num_Category': num_Category
    }

    # NETWORK HYPER-PARMETERS
    network_settings = {
        'h_dim_shared': in_parser['h_dim_shared'],
        'num_layers_shared': in_parser['num_layers_shared'],
        'h_dim_CS': in_parser['h_dim_CS'],
        'num_layers_CS': in_parser['num_layers_CS'],
        'active_fn': ACTIVATION_FN[in_parser['active_fn']],
        'initial_W': initial_W
    }

    file_path_final = in_parser['out_path'] + '/itr_' + str(out_itr)

    #change parameters...
    if not os.path.exists(file_path_final + '/models/'):
        os.makedirs(file_path_final + '/models/')

    print(file_path_final + ' (a:' + str(alpha) + ' b:' + str(beta) + ' c:' +
          str(gamma) + ')')

    ##### CREATE DEEPFHT NETWORK
    tf.reset_default_graph()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    model = Model_DeepHit(sess, "DeepHit", input_dims, network_settings)
    saver = tf.train.Saver()

    sess.run(tf.global_variables_initializer())

    ### TRAINING-TESTING SPLIT
    (tr_data, te_data, tr_time, te_time, tr_label, te_label, tr_mask1,
     te_mask1, tr_mask2, te_mask2) = train_test_split(data,
                                                      time,
                                                      label,
                                                      mask1,
                                                      mask2,
                                                      test_size=0.20,
                                                      random_state=seed)

    (tr_data, va_data, tr_time, va_time, tr_label, va_label, tr_mask1,
     va_mask1, tr_mask2, va_mask2) = train_test_split(tr_data,
                                                      tr_time,
                                                      tr_label,
                                                      tr_mask1,
                                                      tr_mask2,
                                                      test_size=0.20,
                                                      random_state=seed)

    max_valid = -99
    stop_flag = 0

    if eval_time is None:
        eval_time = [
            int(np.percentile(tr_time, 25)),
            int(np.percentile(tr_time, 50)),
            int(np.percentile(tr_time, 75))
        ]

    ### TRAINING - MAIN
    print("MAIN TRAINING ...")
    print("EVALUATION TIMES: " + str(eval_time))

    avg_loss = 0
    for itr in range(iteration):
        if stop_flag > 5:  #for faster early stopping
            break
        else:
            x_mb, k_mb, t_mb, m1_mb, m2_mb = f_get_minibatch(
                mb_size, tr_data, tr_label, tr_time, tr_mask1, tr_mask2)
            DATA = (x_mb, k_mb, t_mb)
            MASK = (m1_mb, m2_mb)
            PARAMETERS = (alpha, beta, gamma)
            _, loss_curr = model.train(DATA, MASK, PARAMETERS, keep_prob,
                                       lr_train)
            avg_loss += loss_curr / 1000

            if (itr + 1) % 1000 == 0:
                print(
                    '|| ITR: ' + str('%04d' % (itr + 1)) + ' | Loss: ' +
                    colored(str('%.4f' %
                                (avg_loss)), 'yellow', attrs=['bold']))
                avg_loss = 0

            ### VALIDATION  (based on average C-index of our interest)
            if (itr + 1) % 1000 == 0:
                ### PREDICTION
                pred = model.predict(va_data)

                ### EVALUATION
                va_result1 = np.zeros([num_Event, len(eval_time)])

                for t, t_time in enumerate(eval_time):
                    eval_horizon = int(t_time)

                    if eval_horizon >= num_Category:
                        print('ERROR: evaluation horizon is out of range')
                        va_result1[:, t] = va_result2[:, t] = -1
                    else:
                        risk = np.sum(pred[:, :, :(eval_horizon + 1)],
                                      axis=2)  #risk score until eval_time
                        for k in range(num_Event):
                            # va_result1[k, t] = c_index(risk[:,k], va_time, (va_label[:,0] == k+1).astype(int), eval_horizon) #-1 for no event (not comparable)
                            va_result1[k, t] = weighted_c_index(
                                tr_time, (tr_label[:, 0] == k + 1).astype(int),
                                risk[:, k], va_time,
                                (va_label[:, 0] == k + 1).astype(int),
                                eval_horizon)
                tmp_valid = np.mean(va_result1)

                if tmp_valid > max_valid:
                    stop_flag = 0
                    max_valid = tmp_valid
                    print('updated.... average c-index = ' + str('%.4f' %
                                                                 (tmp_valid)))

                    if max_valid > MAX_VALUE:
                        saver.save(
                            sess, file_path_final + '/models/model_itr_' +
                            str(out_itr))
                else:
                    stop_flag += 1

    return max_valid
Esempio n. 2
0
        'num_layers_CS': num_layers_CS,
        'active_fn': active_fn,
        'initial_W': initial_W
    }

    # for out_itr in range(OUT_ITERATION):
    print('ITR: ' + str(out_itr + 1) + ' DATA MODE: ' + data_mode + ' (a:' +
          str(alpha) + ' b:' + str(beta) + ' c:' + str(gamma) + ')')
    ##### CREATE DEEPFHT NETWORK
    tf.reset_default_graph()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    model = Model_DeepHit(sess, "DeepHit", input_dims, network_settings)
    saver = tf.train.Saver()

    # NEW CODE
    writer = tf.summary.FileWriter(
        in_path + '/itr_' + str(out_itr) + '/graphs', sess.graph)

    sess.run(tf.global_variables_initializer())

    ### TRAINING-TESTING SPLIT
    (tr_data, te_data, tr_time, te_time, tr_label, te_label, tr_mask1,
     te_mask1, tr_mask2, te_mask2) = train_test_split(data,
                                                      time,
                                                      label,
                                                      mask1,
                                                      mask2,
Esempio n. 3
0
        'num_layers_CS': num_layers_CS,
        'active_fn': active_fn,
        'initial_W': initial_W
    }

    # for out_itr in range(OUT_ITERATION):
    print('ITR: ' + str(out_itr + 1) + ' DATA MODE: ' + data_mode + ' (a:' +
          str(alpha) + ' b:' + str(beta) + ' c:' + str(gamma) + ')')
    ##### CREATE DEEPFHT NETWORK
    tf.reset_default_graph()

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    model = Model_DeepHit(sess, "DeepHit", input_dims, network_settings)
    saver = tf.train.Saver()

    # NEW CODE
    writer = tf.summary.FileWriter(
        in_path + '/itr_' + str(out_itr) + '/graphs', sess.graph)

    sess.run(tf.global_variables_initializer())

    ### TRAINING-TESTING SPLIT
    (tr_data, va_data, tr_time, va_time, tr_label, va_label, tr_mask1,
     va_mask1, tr_mask2, va_mask2) = train_test_split(data,
                                                      time,
                                                      label,
                                                      mask1,
                                                      mask2,