labels_1_hard = [2,1,0,0,1,0,2,2,1,2,1,3,2,2,1,1,1,2,2,0,0,2,0,2,0,2,2,2,0,0] #66 3's labels_others_1 = [3 for i in range(len(cell_list_others_1))] print len(labels1) print len(labels1) + len(labels2) + len(labels_smeared) feature_array = predict_cells(cell_list) feature_array2 = predict_cells(cell_list2) feature_array_smeared = predict_cells(cell_list_smeared) feature_array_others_1 = predict_cells(cell_list_others_1) feature_array_1_hard = predict_cells(cell_list_1_hard) print feature_array.shape #concatenate features features_1_2 = np.append(feature_array,feature_array2, axis=0) features = np.append(features_1_2, feature_array_smeared, axis=0) features = np.append(features, feature_array_others_1, axis=0) features = np.append(features, feature_array_1_hard, axis=0) #concatenate labels 1 and 2 labels = labels1+labels2+labels_smeared + labels_others_1 + labels_1_hard trainer = training(features, labels) fff = open('./trainer_easy.pik', 'w+') pickle.dump(trainer, fff)
elif filename == "crap_1.png": cytoplasm_cont, nuclei_mask, removed_cells, exchanged_cells = Klara_test.cell_watershed(testimg) cell_list = Klara_test.modify_cell_list(testimg, cytoplasm_cont, nuclei_mask) print "HEEEJ", len(cell_list) elif filename == "only_smeared.png": cytoplasm_cont, nuclei_mask, removed_cells, exchanged_cells = Klara_test.cell_watershed(testimg) cell_list = Klara_test.modify_cell_list(testimg, cytoplasm_cont, nuclei_mask) else: cell_list = rbc_seg.segmentation(testimg) print "other:", len(cell_list) feature_array = get_feature_array(cell_list) if i==0: features = feature_array else: features = np.append(features, feature_array, axis=0) labels = labels + all_labels[i] #labels = labels + [3 for i in range(32)] #labels = labels1+labels2+labels_smeared + labels_others_1 + labels_1_hard print features.shape, len(labels) trainer = classer.training(features, labels) fff = open('./trainer_easy.pik', 'wb') pickle.dump(trainer, fff) mainclassification.cross_validation(features,labels) mainclassification.display_classer(features,labels)