end = 600 pred = 1200 channel = Channel(cur.loc[:end, 'aud'].values, std_ratio = 2) wave = Wave(cur.loc[:end, 'aud'].values) plt.plot(cur.loc[:end, 'aud'].values) plt.figure() plt.plot(channel.flattened) plt.plot(np.zeros(channel.flattened.shape[0]), color='black') plt.plot(np.zeros(channel.flattened.shape[0]) + channel.channel_deviation * 2, color='black') plt.plot(np.zeros(channel.flattened.shape[0]) - channel.channel_deviation * 2, color='black') plt.plot(wave.channel_wave) plt.figure() plt.plot(cur.loc[:pred, 'aud'].values) plt.plot(cur.loc[:end, 'aud'].values) plt.plot(channel.c1(), color='black') plt.plot(channel.c3(), color='black') plt.plot(channel.c5(), color='black') plt.plot(wave.wave) ############################################################################### # Better Autocorrelations ############################################################################### if 0: def serial_corr(wave, lag=1): n = wave.shape[0] y1 = wave[lag:] y2 = wave[:n-lag]
''' for i in range(100, 1000, 10): start = 0 end = i instrument = 'EUR_USD' inst = ratios.loc[start:end, instrument].astype(float) channel = Channel(inst.values) wave = Wave(inst.values) plt.figure() plt.plot(channel.flattened) plt.plot(channel.c5() - channel.line) plt.plot(channel.c1() - channel.line) plt.plot(wave.wave - wave.linregress) plt.show() plt.figure() plt.plot(channel.flattened) plt.plot(channel.c5() - channel.line) plt.plot(channel.c1() - channel.line) plt.plot(wave.wave - wave.linregress, 'o') plt.show() print(end) print('FIT: {}'.format(waves_fit.loc[end].values)) print('FREQ: {}'.format(waves_freq.loc[end].values)) raw_input = input('touch')