def runTest(self): print "------------------ Test3 Populate from MP coeffs ---------" fileIndex = 2 RandomAudioFilePath = file_names[fileIndex] print 'Working on %s' % RandomAudioFilePath sizes = [2**j for j in range(7, 15)] segDuration = 5 nbAtom = 20 pySig = signals.Signal(op.join(audio_files_path, RandomAudioFilePath), mono=True, normalize=True) segmentLength = ((segDuration * pySig.fs) / sizes[-1]) * sizes[-1] nbSeg = floor(pySig.length / segmentLength) # cropping pySig.crop(0, segmentLength) # create dictionary pyDico = Dico(sizes) approx, decay = mp.mp(pySig, pyDico, 20, nbAtom, pad=True, debug=0) ppdb = XMDCTBDB('MPdb.db', load=False) # ppdb.keyformat = None ppdb.populate(approx, None, fileIndex) nKeys = ppdb.get_stats()['ndata'] # compare the number of keys in the base to the number of atoms print ppdb.get_stats() self.assertEqual(nKeys, approx.atom_number) # now try to recover the fileIndex knowing one of the atoms Key = [ log(approx.atoms[0].length, 2), approx.atoms[0].reduced_frequency * pySig.fs ] T, fileI = ppdb.get(Key) Treal = (float(approx.atoms[0].time_position) / float(pySig.fs)) print T, Treal self.assertEqual(fileI[0], fileIndex) Tpy = np.array(T) self.assertTrue((np.abs(Tpy - Treal)).min() < 0.1) # last check: what does a request for non-existing atom in base return? T, fileI = ppdb.get((11, 120.0)) self.assertEqual(T, []) self.assertEqual(fileI, []) # now let's just retrieve the atoms from the base and see if they are # the same histograms = ppdb.retrieve(approx, None, offset=0) # plt.figure() # plt.imshow(histograms[0:10,:]) # plt.show() del ppdb
def runTest(self): ''' take the base previously constructed and retrieve the song index based on 10 atoms ''' print "------------------ Test6 recognition ---------" nbCandidates = 8 ppdb = XMDCTBDB('LargeMPdb.db', load=True) print 'Large Db of ' + str(ppdb.get_stats()['nkeys']) + ' and ' + str( ppdb.get_stats()['ndata']) # Now take a song, decompose it and try to retrieve it fileIndex = 6 RandomAudioFilePath = file_names[fileIndex] print 'Working on ' + str(RandomAudioFilePath) pySig = signals.Signal(op.join(audio_files_path, RandomAudioFilePath), mono=True) pyDico = LODico(sizes) segDuration = 5 offsetDuration = 7 offset = offsetDuration * pySig.fs nbAtom = 50 segmentLength = ((segDuration * pySig.fs) / sizes[-1]) * sizes[-1] pySig.crop(offset, offset + segmentLength) approx, decay = mp.mp(pySig, pyDico, 40, nbAtom, pad=True) # plt.figure() # approx.plotTF() # plt.show() res = map(ppdb.get, map(ppdb.kform, approx.atoms), [(a.time_position - pyDico.get_pad()) / approx.fs for a in approx.atoms]) # #res = map(bdb.get, map(bdb.kform, approx.atoms)) histogram = np.zeros((600, nbCandidates)) for i in range(approx.atom_number): print res[i] histogram[res[i]] += 1 max1 = np.argmax(histogram[:]) Offset1 = max1 / nbCandidates estFile1 = max1 % nbCandidates # candidates , offsets = ppdb.retrieve(approx); # print approx.atom_number histograms = ppdb.retrieve(approx, None, offset=0, nbCandidates=8) # print histograms , np.max(histograms) , np.argmax(histograms, axis=0) , # np.argmax(histograms, axis=1) # plt.figure() # plt.imshow(histograms[0:20,:],interpolation='nearest') # plt.show() maxI = np.argmax(histograms[:]) OffsetI = maxI / nbCandidates estFileI = maxI % nbCandidates print fileIndex, offsetDuration, estFileI, OffsetI, estFile1, Offset1, max1, maxI import matplotlib.pyplot as plt # plt.figure(figsize=(12,6)) # plt.subplot(121) # plt.imshow(histograms,aspect='auto',interpolation='nearest') # plt.subplot(122) # plt.imshow(histogram,aspect='auto',interpolation='nearest') ## plt.imshow(histograms,aspect='auto',interpolation='nearest') ## plt.colorbar() # plt.show() print maxI, OffsetI, estFileI self.assertEqual(histograms[OffsetI, estFileI], np.max(histograms)) self.assertEqual(fileIndex, estFileI) self.assertTrue(abs(offsetDuration - OffsetI) <= 2.5)
def runTest(self): ppdb = XMDCTBDB('tempdb.db', load=False, persistent=True, time_max=500.0) pySig = signals.LongSignal(op.join(audio_files_path, file_names[0]), frame_duration=5, mono=False, Noverlap=0) self.assertEqual(pySig.segment_size, 5.0 * pySig.fs) max_nb_seg = 10 nb_atoms = 150 scales = SpreadDico([8192], penalty=0.1, mask_time=2, mask_freq=20) # scales = Dico([8192]) for segIdx in range(min(max_nb_seg, pySig.n_seg)): pySigLocal = pySig.get_sub_signal(segIdx, 1, mono=True, normalize=False, channel=0, pad=scales.get_pad()) print "MP on segment %d" % segIdx # run the decomposition approx, decay = mp.mp(pySigLocal, scales, 2, nb_atoms, pad=False) print "Populating database with offset " + str( segIdx * pySig.segment_size / pySig.fs) ppdb.populate(approx, None, 0, offset=float((segIdx * pySig.segment_size) - scales.get_pad()) / float(pySig.fs)) # ok we have a DB with only 1 file and different segments, now nb_test_seg = 15 long_sig_test = signals.LongSignal(op.join(audio_files_path, file_names[0]), frame_duration=5, mono=False, Noverlap=0.5) count = 0 for segIdx in range(min(nb_test_seg, long_sig_test.n_seg)): pySigLocal = long_sig_test.get_sub_signal(segIdx, 1, mono=True, normalize=False, channel=0, pad=scales.get_pad()) # print "MP on segment %d" % segIdx # run the decomposition approx, decay = mp.mp(pySigLocal, scales, 2, nb_atoms, pad=False) print approx.atom_number histograms = ppdb.retrieve(approx, None, nbCandidates=1) maxI = np.argmax(histograms[:]) OffsetI = maxI / 1 estFileI = maxI % 1 oracle_value = segIdx * long_sig_test.segment_size * ( 1 - long_sig_test.overlap) / long_sig_test.fs print "Seg %d Oracle: %1.1f - found %1.1f" % (segIdx, oracle_value, OffsetI) if abs(OffsetI - oracle_value) < 5: count += 1 glob = float(count) / float(min(nb_test_seg, long_sig_test.n_seg)) print "Global Score of %1.3f" % glob self.assertGreater(glob, 0.8)