def main(): features = lsi(tfidf('small_train.txt'), 100) classes = get_classes('small_train.txt', 0.7, 5) prob = svm_problem(classes, features) param = svm_parameter('-t 0 -c 4 -b 1') m = svm_train(prob, param) test_features = lsi(tfidf('small_test.txt'), 100) test_classes = get_classes('small_test.txt', 0.7, 5) p_label, p_acc, p_val = svm_predict(test_classes, test_features, m)
def get_acc(trainfilename, testfilename, d, a, r): features = lsi(tfidf('small_train.txt'), d) classes = get_classes('small_train.txt', a, r) prob = svm_problem(classes, features) param = svm_parameter('-t 0 -c 4 -b 1') m = svm_train(prob, param) test_features = lsi(tfidf('small_test.txt'),d) test_classes = get_classes('small_test.txt', a, r) p_label, p_acc, p_val = svm_predict(test_classes, test_features, m) return p_acc
def get_attendance(username, subject): user = db.users.find_one({"username" : username}) attendance = user['attendance'] sub = get_classes(username)["subjects"] req_sub = {} for i in sub: if i['name'] == subject: req_sub = i tot = len (req_sub["occurences"]) present = 0 absent = 0 for k in req_sub["occurences"]: for i in attendance: if i["id"] == k["id"]: if i["presence"] == "p": present += 1 elif i["absent"] == "a": absent +=1 attendance_sub = { "subject": subject , "attendance": { "total" : tot, "present": present, "absent": absent, "pending": tot - absent - present } } print dumps(attendance_sub) return dumps( attendance_sub )
def methods_trace(ctxt, expr=None): 'reports calls to several dalvik method' cpt = 0 class_list = get_classes(ctxt, expr) for cla in class_list: method_list = get_methods(ctxt, cla) for method in method_list: cpath, mname, mjni = andbug.options.parse_mquery(".".join(method.split('.')[0:-1]), method.split('.')[-1]) cmd_hook_methods(ctxt, cpath, mname) cpt += 1 #print(mname) andbug.screed.item("%d functions hooked" % cpt)
def detect(self, img): img_h, img_w = img.shape[:2] inp, ox, oy, new_w, new_h = self.preprocess(img) inp = np.expand_dims(inp,0) outs = self.sess.run(self.net.prediction, feed_dict={self.inputs: inp}) outs = outs[0] #print('out,',outs.shape) boxes = decode_boxes(outs[:, :4],self.priors) preds = np.argmax(outs[:, 4:], axis=1) confidences = np.max(outs[:, 4:], axis=1) #print('preds',preds.shape,confidences[:5]) #print(preds[:5]) # skip background class mask = np.where(preds > 0) #print('cls_mask',mask[0].shape) boxes = boxes[mask] preds = preds[mask] confidences = confidences[mask] mask = np.where(confidences >= cfgs.AnchorThreshold) #print('confidence mask and threshold',mask[0].shape,cfgs.AnchorThreshold) boxes = boxes[mask] preds = preds[mask] confidences = confidences[mask] #print('final score:',confidences) results = [] for box, clsid, conf in zip(boxes, preds, confidences): xmin, ymin, xmax, ymax = box left = int((xmin - ox) / new_w * img_w) top = int((ymin - oy) / new_h * img_h) right = int((xmax - ox) / new_w * img_w) bottom = int((ymax - oy) / new_h * img_h) conf = float(conf) name, color = get_classes(clsid - 1) results.append({ 'left': left, 'top': top, 'right': right, 'bottom': bottom, 'name': name, 'color': color, 'confidence': conf, }) #results = nms(results,1-self.threshold,'Min') results = nms(results,self.threshold) results = nms(results,1- self.threshold,'Min') #results = soft_nms(results, self.threshold) #print("after nms result num: ",len(results)) return results
args = parser.parse_args() parser.print_help() print('input args: ', args) if __name__ == '__main__': gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # sess = tf.compat.v1.Session() # K.set_session(sess) tf.compat.v1.keras.backend.set_session(sess) data_dirs = args.data_dirs output_representation = args.output_representation sample_rate = args.sample_rate print("sample rate", sample_rate) batch_size = args.batch_size classes = get_classes(wanted_only=True) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=800, window_size_ms=30.0, window_stride_ms=10.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) print(model_settings) ap = AudioProcessor(data_dirs=data_dirs, wanted_words=classes, silence_percentage=13.0,
default=100, help='num of epoch') args = parser.parse_args() parser.print_help() print('input args: ', args) if __name__ == '__main__': gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) K.set_session(sess) data_dirs = args.data_dirs output_representation = args.output_representation sample_rate = args.sample_rate batch_size = args.batch_size epoch = args.epoch classes = get_classes(wanted_only=True) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=1000, window_size_ms=30.0, window_stride_ms=10.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) print(model_settings) ap = AudioProcessor( data_dirs=data_dirs, wanted_words=classes,
required=True, help='<Required> The list of data directories. e.g., data/train') args = parser.parse_args() parser.print_help() print('input args: ', args) if __name__ == '__main__': gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) K.set_session(sess) data_dirs = args.data_dirs output_representation = args.output_representation sample_rate = args.sample_rate batch_size = args.batch_size classes = get_classes(wanted_only=True) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=1000, window_size_ms=30.0, window_stride_ms=10.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) print(model_settings) ap = AudioProcessor( data_dirs=data_dirs, wanted_words=classes,
if __name__ == '__main__': test_fns = sorted(glob('data/test/audio/*.wav')) sess = K.get_session() K.set_learning_phase(0) sample_rate = 16000 use_tta = True use_speed_tta = False if use_speed_tta: tta_fns = sorted(glob('data/tta_test/audio/*.wav')) assert len(test_fns) == len(tta_fns) wanted_only = False extend_reversed = False output_representation = 'raw' batch_size = 384 wanted_words = prepare_words_list(get_classes(wanted_only=True)) classes = get_classes(wanted_only=wanted_only, extend_reversed=extend_reversed) int2label = get_int2label(wanted_only=wanted_only, extend_reversed=extend_reversed) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=1000, window_size_ms=25.0, window_stride_ms=15.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) ap = AudioProcessor(data_dirs=['data/train/audio'], wanted_words=classes,
# np.log(32) ~ 3.5 # np.log(48) ~ 3.9 # 64727 training files if __name__ == '__main__': # restrict gpu usage: https://stackoverflow.com/questions/34199233/how-to-prevent-tensorflow-from-allocating-the-totality-of-a-gpu-memory # noqa gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) K.set_session(sess) data_dirs = ['data/train/audio'] add_pseudo = True if add_pseudo: data_dirs.append('data/heng_pseudo') output_representation = 'raw' sample_rate = 16000 batch_size = 384 classes = get_classes(wanted_only=True, extend_reversed=False) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=1000, window_size_ms=30.0, window_stride_ms=10.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) ap = AudioProcessor(data_dirs=data_dirs, wanted_words=classes, silence_percentage=13.0, unknown_percentage=60.0, validation_percentage=10.0, testing_percentage=0.0,
from tensorflow.python.ops import io_ops from keras import backend as K K.set_session(sess) K.set_learning_phase(0) from keras.models import load_model from keras.applications.mobilenet import DepthwiseConv2D from keras.activations import softmax from model import relu6, overlapping_time_slice_stack from classes import get_classes from utils import smooth_categorical_crossentropy FINAL_TENSOR_NAME = 'labels_softmax' FROZEN_PATH = 'tf_files/frozen.pb' OPTIMIZED_PATH = 'tf_files/optimized.pb' wanted_classes = get_classes(wanted_only=True) all_classes = get_classes(wanted_only=False) model = load_model('checkpoints_186/ep-053-vl-0.2915.hdf5', custom_objects={'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D, 'overlapping_time_slice_stack': overlapping_time_slice_stack, 'softmax': softmax, '<lambda>': smooth_categorical_crossentropy}) # rename placeholders for special prize: # https://www.kaggle.com/c/tensorflow-speech-recognition-challenge#Prizes # decoded_sample_data:0, taking a [16000, 1] float tensor as input, # representing the audio PCM-encoded data.