Esempio n. 1
0
def time_testing( n, path, data_numbers):
    results = {}
    number_of_instances = len(data_numbers)
    sumBB_simple = [0 for i in range(number_of_instances)]
    sumBB_sym = [0 for i in range(number_of_instances)]
    sumBB_asym = [0 for i in range(number_of_instances)]
    sum_BF = [0 for i in range(number_of_instances)]
    sum_dp = [0 for i in range(number_of_instances)]

    results["Problem size"]= []
    results["Brute Force"]= []
    results["Branch and bound(MST)"] = []
    results["Branch and bound(two minimum edges)"] = []
    results["Simple branch and bound"] = []
    results["Dynamic programming"] =[]



    sum_index = 0

    for z in data_numbers:
        ts = t.TSP()
        ts.read_from_file(path+'data{}.txt'.format(z))
        # for i in ts.graph_matrix:
        #     print(i)

        branch_and_bound = b.BB(ts)
        dp = DP.DP(ts)

        for i in range(n):
            start1 = time.time()
            branch_and_bound.simple_BB()
            end1 = time.time()
            sumBB_simple[sum_index]+= end1-start1


            start = time.time()
            branch_and_bound.MST_BB_symmetric()
            end = time.time()
            sumBB_sym[sum_index]+=(end-start)

            start = time.time()
            branch_and_bound.BB_asymmetric()
            end = time.time()
            sumBB_asym[sum_index] += (end-start)

            start = time.time()
            length_dp , route_dp= dp.dp_method()
            end = time.time()
            sum_dp[sum_index]+=(end-start)

            if z<13:
                start = time.time()
                ts.DFS_based()
                end = time.time()
                sum_BF[sum_index]+=(end-start)


        results["Problem size"].append(z)
        if z<13:
            results["Brute Force"].append(sum_BF[sum_index]/n)
        else:
            results["Brute Force"].append(None)


        results["Branch and bound(MST)"].append(sumBB_sym[sum_index]/n)
        results["Branch and bound(two minimum edges)"].append(sumBB_asym[sum_index]/n)
        results["Simple branch and bound"].append(sumBB_simple[sum_index]/n)
        results["Dynamic programming"].append(sum_dp[sum_index]/n)
        sum_index+=1


    return results
Esempio n. 2
0
import unittest
import numpy as np
from classes import TSP as t
from classes import GA

tsp = t.TSP()
tsp.read_from_file('data/dataEtap2/data16.txt')
gen = GA.GeneticAlgorithm(tsp)
population_number = 200
gen.PMX_alg(3, population_number, 0.8, 0.1, "inversion", "roulette", 3, 10,
            "hybrid")
a = [1, 2, 3]
b = [1, 0, 3]
c = [2, 3, 4]
d = [a, b, c]


class MyTestCase(unittest.TestCase):
    def test_parents_len(self):
        for parent in gen.parents:
            self.assertEqual(len(parent), gen.graph_size)

    def test_parents_0idx(self):
        for parent in gen.parents:
            self.assertEqual(parent[0], 0)

    def test_children_0idx(self):
        for newone in gen.children:
            self.assertEqual(newone[0], 0)

    def test_children_pop(self):
Esempio n. 3
0
def temp_testing(n,path,data_numbers,opt):

    results = {}
    number_of_instances = len(data_numbers)

    sumSA_5000_t = [0 for i in range(number_of_instances)]
    sumSA_10000_t= [0 for i in range(number_of_instances)]
    sumSA_20000_t = [0 for i in range(number_of_instances)]
    sumSA_30000_t= [0 for i in range(number_of_instances)]
    sumSA_40000_t = [0 for i in range(number_of_instances)]
    sumSA_50000_t = [0 for i in range(number_of_instances)]

    sumSA_5000_e = [0 for i in range(number_of_instances)]
    sumSA_10000_e= [0 for i in range(number_of_instances)]
    sumSA_20000_e = [0 for i in range(number_of_instances)]
    sumSA_30000_e= [0 for i in range(number_of_instances)]
    sumSA_40000_e = [0 for i in range(number_of_instances)]
    sumSA_50000_e = [0 for i in range(number_of_instances)]

    results["Problem size"] = []
    results["Simulated annealing - 5000 time"] = []
    results["Simulated annealing - 10000 time"] = []
    results["Simulated annealing - 20000 time"] = []
    results["Simulated annealing - 30000 time"] = []
    results["Simulated annealing - 40000 time"] = []
    results["Simulated annealing - 50000 time"] = []

    results["Simulated annealing - 5000 error"] = []
    results["Simulated annealing - 10000 error"] = []
    results["Simulated annealing - 20000 error"] = []
    results["Simulated annealing - 30000 error"] = []
    results["Simulated annealing - 40000 error"] = []
    results["Simulated annealing - 50000 error"] = []


    sum_index = 0

    for z in data_numbers:
        tsp = t.TSP()
        tsp.read_from_file(path+'data{}.txt'.format(z))

        sim_annealing = SA.SA(tsp)

        for i in range(n):
            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(5000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_5000_t[sum_index]+= end1-start1
            sumSA_5000_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(10000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_10000_t[sum_index]+= end1-start1
            sumSA_10000_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(20000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_20000_t[sum_index]+= end1-start1
            sumSA_20000_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(30000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_30000_t[sum_index]+= end1-start1
            sumSA_30000_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(40000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_40000_t[sum_index]+= end1-start1
            sumSA_40000_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(50000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_50000_t[sum_index]+= end1-start1
            sumSA_50000_e[sum_index] += dist

        results["Problem size"].append(z)

        results["Simulated annealing - 5000 time"].append(sumSA_5000_t[sum_index]/n)
        results["Simulated annealing - 10000 time"].append(sumSA_10000_t[sum_index]/n)
        results["Simulated annealing - 20000 time"].append(sumSA_20000_t[sum_index]/n)
        results["Simulated annealing - 30000 time"].append(sumSA_30000_t[sum_index]/n)
        results["Simulated annealing - 40000 time"].append(sumSA_40000_t[sum_index]/n)
        results["Simulated annealing - 50000 time"].append(sumSA_50000_t[sum_index]/n)

        results["Simulated annealing - 5000 error"].append((((sumSA_5000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - 10000 error"].append((((sumSA_10000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - 20000 error"].append((((sumSA_20000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - 30000 error"].append((((sumSA_30000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - 40000 error"].append((((sumSA_40000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - 50000 error"].append((((sumSA_50000_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)

        sum_index+=1

    return results
Esempio n. 4
0
def cooling_testing(n,path,data_numbers,opt):

    results = {}
    number_of_instances = len(data_numbers)

    sumSA_geo_t = [0 for i in range(number_of_instances)]
    sumSA_lin_t= [0 for i in range(number_of_instances)]
    sumSA_log_t = [0 for i in range(number_of_instances)]
    sumSA_geo_e = [0 for i in range(number_of_instances)]
    sumSA_lin_e = [0 for i in range(number_of_instances)]
    sumSA_log_e = [0 for i in range(number_of_instances)]

    results["Problem size"] = []
    results["Simulated annealing - logarithmic time"] = []
    results["Simulated annealing - linear time"] = []
    results["Simulated annealing - geometric time"] = []
    results["Simulated annealing - logarithmic error"] = []
    results["Simulated annealing - linear error"] = []
    results["Simulated annealing - geometric error"] = []


    sum_index = 0

    for z in data_numbers:
        tsp = t.TSP()
        tsp.read_from_file(path+'data{}.txt'.format(z))

        sim_annealing = SA.SA(tsp)

        for i in range(n):
            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"insert","random","geo",0.99,6)
            end1 = time.time()
            sumSA_geo_t[sum_index]+= end1-start1
            sumSA_geo_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_lin_t[sum_index]+= end1-start1
            sumSA_lin_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"insert","random","log",2,6)
            end1 = time.time()
            sumSA_log_t[sum_index]+= end1-start1
            sumSA_log_e[sum_index] += dist


        results["Problem size"].append(z)

        results["Simulated annealing - geometric time"].append(sumSA_geo_t[sum_index]/n)
        results["Simulated annealing - linear time"].append(sumSA_lin_t[sum_index]/n)
        results["Simulated annealing - logarithmic time"].append(sumSA_log_t[sum_index]/n)
        results["Simulated annealing - geometric error"].append((((sumSA_geo_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - linear error"].append((((sumSA_lin_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - logarithmic error"].append((((sumSA_log_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)

        sum_index+=1

    return results
Esempio n. 5
0
def tabuTS_testing( n, path, data_numbers,opt):
    results = {}
    number_of_instances = len(data_numbers)

    sumTS_2_t = [0 for i in range(number_of_instances)]
    sumTS_2_e = [0 for i in range(number_of_instances)]

    sumTS_3_t = [0 for i in range(number_of_instances)]
    sumTS_3_e = [0 for i in range(number_of_instances)]

    sumTS_4_t = [0 for i in range(number_of_instances)]
    sumTS_4_e = [0 for i in range(number_of_instances)]
    sumTS_5_t = [0 for i in range(number_of_instances)]
    sumTS_5_e = [0 for i in range(number_of_instances)]

    results["Problem size"] = []

    results["Tabu search - 2 time"] = []
    results["Tabu search - 2 error"] = []

    results["Tabu search - 3 error"] = []
    results["Tabu search - 3 time"] = []

    results["Tabu search - 4 error"] = []
    results["Tabu search - 4 time"] = []

    results["Tabu search - 5 error"] = []
    results["Tabu search - 5 time"] = []




    sum_index = 0

    for z in data_numbers:
        tsp = t.TSP()
        tsp.read_from_file(path+'data{}.txt'.format(z))

        tabu_s  = TS.TS(tsp)

        for i in range(n):


            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","insert",2,80)
            end1 = time.time()
            sumTS_2_t[sum_index]+= end1-start1
            sumTS_2_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","insert",3,80)
            end1 = time.time()
            sumTS_3_t[sum_index]+= end1-start1
            sumTS_3_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","insert",4,80)
            end1 = time.time()
            sumTS_4_t[sum_index]+= end1-start1
            sumTS_4_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","insert",5,80)
            end1 = time.time()
            sumTS_5_t[sum_index]+= end1-start1
            sumTS_5_e[sum_index] += dist

        results["Problem size"].append(z)

        results["Tabu search - 2 time"].append(sumTS_2_t[sum_index]/n)
        results["Tabu search - 2 error"].append((((sumTS_2_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)

        results["Tabu search - 3 error"].append((((sumTS_3_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - 3 time"].append(sumTS_3_t[sum_index]/n)

        results["Tabu search - 4 error"].append((((sumTS_4_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - 4 time"].append(sumTS_4_t[sum_index]/n)

        results["Tabu search - 5 error"].append((((sumTS_5_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - 5 time"].append(sumTS_5_t[sum_index]/n)




        sum_index+=1
        if(sum_index%4 == 0):
            df = pd.DataFrame(results)
            df.to_csv("backup.csv")

    return results
Esempio n. 6
0
def time_testing( n, path, data_numbers,opt):
    results = {}
    number_of_instances = len(data_numbers)
    sumSA_ivrt_t = [0 for i in range(number_of_instances)]
    sumSA_ins_t= [0 for i in range(number_of_instances)]
    sumSA_sw_t = [0 for i in range(number_of_instances)]

    sumSA_ivrt_e = [0 for i in range(number_of_instances)]
    sumSA_ins_e = [0 for i in range(number_of_instances)]
    sumSA_sw_e = [0 for i in range(number_of_instances)]

    sumTS_mat_ins_t = [0 for i in range(number_of_instances)]
    sumTS_list_t = [0 for i in range(number_of_instances)]
    sumTS_mat_ins_e = [0 for i in range(number_of_instances)]
    sumTS_list_e = [0 for i in range(number_of_instances)]

    sumTS_mat_inv_t = [0 for i in range(number_of_instances)]
    sumTS_mat_inv_e = [0 for i in range(number_of_instances)]
    sumTS_mat_sw_t = [0 for i in range(number_of_instances)]
    sumTS_mat_sw_e = [0 for i in range(number_of_instances)]

    results["Problem size"] = []
    results["Simulated annealing - invert time"] = []
    results["Simulated annealing - insert time"] = []
    results["Simulated annealing - swap time"] = []
    results["Simulated annealing - invert error"] = []
    results["Simulated annealing - insert error"] = []
    results["Simulated annealing - swap error"] = []
    results["Tabu search - list time"] = []
    results["Tabu search - list error"] = []
    results["Tabu search - matrix insert error"] = []
    results["Tabu search - matrix insert time"] = []
    results["Tabu search - matrix invert error"] = []
    results["Tabu search - matrix invert time"] = []
    results["Tabu search - matrix swap error"] = []
    results["Tabu search - matrix swap time"] = []




    sum_index = 0

    for z in data_numbers:
        tsp = t.TSP()
        tsp.read_from_file(path+'data{}.txt'.format(z))

        sim_annealing = SA.SA(tsp)
        tabu_s  = TS.TS(tsp)

        for i in range(n):
            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"invert","random","lin",2,6)
            end1 = time.time()
            sumSA_ivrt_t[sum_index]+= end1-start1
            sumSA_ivrt_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"insert","random","lin",2,6)
            end1 = time.time()
            sumSA_ins_t[sum_index]+= end1-start1
            sumSA_ins_e[sum_index] += dist

            start1 = time.time()
            dist , rt = sim_annealing.start_annealing(7000,20000,"swap","random","lin",2,6)
            end1 = time.time()
            sumSA_sw_t[sum_index]+= end1-start1
            sumSA_sw_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search(3000,"greedy","insert",3,80)
            end1 = time.time()
            sumTS_list_t[sum_index]+= end1-start1
            sumTS_list_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","insert",3,80)
            end1 = time.time()
            sumTS_mat_ins_t[sum_index]+= end1-start1
            sumTS_mat_ins_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","invert",3,80)
            end1 = time.time()
            sumTS_mat_inv_t[sum_index]+= end1-start1
            sumTS_mat_inv_e[sum_index] += dist

            tabu_s  = TS.TS(tsp)
            start1 = time.time()
            dist , rt = tabu_s.start_search_matrix(3000,"greedy","swap",3,80)
            end1 = time.time()
            sumTS_mat_sw_t[sum_index]+= end1-start1
            sumTS_mat_sw_e[sum_index] += dist

        results["Problem size"].append(z)



        results["Simulated annealing - invert time"].append(sumSA_ivrt_t[sum_index]/n)
        results["Simulated annealing - insert time"].append(sumSA_ins_t[sum_index]/n)
        results["Simulated annealing - swap time"].append(sumSA_sw_t[sum_index]/n)
        results["Simulated annealing - invert error"].append((((sumSA_ivrt_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - insert error"].append((((sumSA_ins_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Simulated annealing - swap error"].append((((sumSA_sw_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)



        results["Tabu search - list time"].append(sumTS_list_t[sum_index]/n)
        results["Tabu search - list error"].append((((sumTS_list_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - matrix insert error"].append((((sumTS_mat_ins_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - matrix insert time"].append(sumTS_mat_ins_t[sum_index]/n)

        results["Tabu search - matrix invert error"].append((((sumTS_mat_inv_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - matrix invert time"].append(sumTS_mat_inv_t[sum_index]/n)

        results["Tabu search - matrix swap error"].append((((sumTS_mat_sw_e[sum_index]/n)-opt[sum_index])/opt[sum_index])*100)
        results["Tabu search - matrix swap time"].append(sumTS_mat_sw_t[sum_index]/n)




        sum_index+=1
        if(sum_index%4 == 0):
            df = pd.DataFrame(results)
            df.to_csv("backup.csv")

    return results
Esempio n. 7
0
                        mode='markers+lines',
                        name='Tabu search - matrix swap',
                        marker = dict(size = 12)
                        ))




    pio.write_html(figure, file='test_plot.html', auto_open=True)

    figure.show()




x = t.TSP()
x.read_from_file('data/dataEtap2/data13.txt')

# sim_ann = SA.SA(x)
# start = time.time()
# opt, route = sim_ann.start_annealing(7000,20000,"invert","greedy","lin",2,5)
# end = time.time()
# res = end-start
# print(opt, res, route)
#
# tabu_s = TS.TS(x)
# start = time.time()
# optTS, routeTS = tabu_s.start_search(3000,"greedy","invert",3,80)
# end = time.time()
# res = end-start
# print(optTS, res,routeTS)