Esempio n. 1
0
 def __init__(self, basemodel, ensemble_model, submodels):
     self.corenlp = StanfordCoreNLP(config.corenlp_dir)
     self.basemodel = basemodel
     self.ensemble_model = ensemble_model
     self.subtypes = submodels
     self.models = TaggerCollection(basepath=self.basemodel)
     self.models.load_models()
     self.ensemble = EnsembleNER(self.ensemble_model, None, self.basemodel + "_combined", types=self.subtypes,
                                features=[])
     self.ensemble.load()
Esempio n. 2
0
def main():
    start_time = time.time()
    parser = argparse.ArgumentParser(description='')
    parser.add_argument("actions",
                        default="classify",
                        help="Actions to be performed.",
                        choices=[
                            "load_corpus", "annotate", "classify",
                            "write_results", "write_goldstandard", "train",
                            "test", "train_multiple", "test_multiple",
                            "train_matcher", "test_matcher", "crossvalidation",
                            "train_relations", "test_relations"
                        ])
    parser.add_argument(
        "--goldstd",
        default="",
        dest="goldstd",
        nargs="+",
        help="Gold standard to be used. Will override corpus, annotations",
        choices=config.paths.keys())
    parser.add_argument("--submodels",
                        default="",
                        nargs='+',
                        help="sub types of classifiers"),
    parser.add_argument(
        "-i",
        "--input",
        dest="input",
        action="store",
        default='''Administration of a higher dose of indinavir should be \\
considered when coadministering with megestrol acetate.''',
        help="Text to classify.")
    parser.add_argument(
        "--corpus",
        dest="corpus",
        nargs=2,
        default=[
            "chemdner",
            "CHEMDNER/CHEMDNER_SAMPLE_JUNE25/chemdner_sample_abstracts.txt"
        ],
        help="format path")
    parser.add_argument("--annotations", dest="annotations")
    parser.add_argument("--tag",
                        dest="tag",
                        default="0",
                        help="Tag to identify the text.")
    parser.add_argument("--models",
                        dest="models",
                        help="model destination path, without extension")
    parser.add_argument("--entitytype",
                        dest="etype",
                        help="type of entities to be considered",
                        default="all")
    parser.add_argument("--pairtype",
                        dest="ptype",
                        help="type of pairs to be considered",
                        default="all")
    parser.add_argument("--doctype",
                        dest="doctype",
                        help="type of document to be considered",
                        default="all")
    parser.add_argument("--annotated",
                        action="store_true",
                        default=False,
                        dest="annotated",
                        help="True if the input has <entity> tags.")
    parser.add_argument(
        "-o",
        "--output",
        "--format",
        dest="output",
        nargs=2,
        help="format path; output formats: xml, html, tsv, text, chemdner.")
    parser.add_argument("--crf",
                        dest="crf",
                        help="CRF implementation",
                        default="stanford",
                        choices=["stanford", "crfsuite"])
    parser.add_argument("--log",
                        action="store",
                        dest="loglevel",
                        default="WARNING",
                        help="Log level")
    parser.add_argument("--kernel",
                        action="store",
                        dest="kernel",
                        default="svmtk",
                        help="Kernel for relation extraction")
    options = parser.parse_args()

    # set logger
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    while len(logging.root.handlers) > 0:
        logging.root.removeHandler(logging.root.handlers[-1])
    logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s'
    logging.basicConfig(level=numeric_level,
                        format=logging_format,
                        filename="debug.log")
    logging.getLogger().setLevel(numeric_level)
    logging.getLogger("requests.packages").setLevel(30)
    logging.info("Processing action {0} on {1}".format(options.actions,
                                                       options.goldstd))

    # set configuration variables based on the goldstd option if the corpus has a gold standard,
    # or on corpus and annotation options
    # pre-processing options
    if options.actions == "load_corpus":
        if len(options.goldstd) > 1:
            print("load only one corpus each time")
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_format = config.paths[options.goldstd]["format"]
        corpus_path = config.paths[options.goldstd]["text"]
        corpus_ann = config.paths[options.goldstd]["annotations"]

        corenlp_client = StanfordCoreNLP('http://localhost:9000')
        corpus = load_corpus(options.goldstd, corpus_path, corpus_format,
                             corenlp_client)
        corpus.save(config.paths[options.goldstd]["corpus"])
        if corpus_ann:  #add annotation if it is not a test set
            corpus.load_annotations(corpus_ann, options.etype, options.ptype)
            corpus.save(config.paths[options.goldstd]["corpus"])

    elif options.actions == "annotate":  # rext-add annotation to corpus
        if len(options.goldstd) > 1:
            print("load only one corpus each time")
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_path = config.paths[options.goldstd]["corpus"]
        corpus_ann = config.paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        logging.debug("loading annotations...")
        corpus.clear_annotations(options.etype)
        corpus.load_annotations(corpus_ann, options.etype, options.ptype)
        # corpus.get_invalid_sentences()
        corpus.save(config.paths[options.goldstd]["corpus"])
    else:
        corpus = Corpus("corpus/" + "&".join(options.goldstd))
        for g in options.goldstd:
            corpus_path = config.paths[g]["corpus"]
            logging.info("loading corpus %s" % corpus_path)
            this_corpus = pickle.load(open(corpus_path, 'rb'))
            corpus.documents.update(this_corpus.documents)
        if options.actions == "write_goldstandard":
            model = BiasModel(options.output[1])
            model.load_data(corpus, [])
            results = model.test()
            #results = ResultsNER(options.output[1])
            #results.get_ner_results(corpus, model)
            results.save(options.output[1] + ".pickle")
            #logging.info("saved gold standard results to " + options.output[1] + ".txt")

        # training
        elif options.actions == "train":
            if options.crf == "stanford":
                model = StanfordNERModel(options.models, options.etype)
            elif options.crf == "crfsuite":
                model = CrfSuiteModel(options.models, options.etype)
            model.load_data(corpus, feature_extractors.keys(), options.etype)
            model.train()
        elif options.actions == "train_matcher":  # Train a simple classifier based on string matching
            model = MatcherModel(options.models)
            model.train(corpus)
            # TODO: term list option
            #model.train("TermList.txt")
        elif options.actions == "train_multiple":  # Train one classifier for each type of entity in this corpus
            # logging.info(corpus.subtypes)
            models = TaggerCollection(basepath=options.models,
                                      corpus=corpus,
                                      subtypes=corpus.subtypes)
            models.train_types()
        elif options.actions == "train_relations":
            if options.kernel == "jsre":
                model = JSREKernel(corpus, options.ptype)
            elif options.kernel == "svmtk":
                model = SVMTKernel(corpus, options.ptype)
            elif options.kernel == "stanfordre":
                model = StanfordRE(corpus, options.ptype)
            elif options.kernel == "multir":
                model = MultiR(corpus, options.ptype)
            elif options.kernel == "scikit":
                model = ScikitRE(corpus, options.ptype)
            elif options.kernel == "crf":
                model = CrfSuiteRE(corpus, options.ptype)
            model.train()
        # testing
        elif options.actions == "test":
            base_port = 9191
            if len(options.submodels) > 1:
                allresults = ResultSetNER(corpus, options.output[1])
                for i, submodel in enumerate(options.submodels):
                    model = StanfordNERModel(options.models + "_" + submodel)
                    model.load_tagger(base_port + i)
                    # load data into the model format
                    model.load_data(corpus,
                                    feature_extractors.keys(),
                                    mode="test")
                    # run the classifier on the data
                    results = model.test(corpus, port=base_port + i)
                    allresults.add_results(results)
                    model.kill_process()
                # save the results to an object that can be read again, and log files to debug
                final_results = allresults.combine_results()
            else:
                if options.crf == "stanford":
                    model = StanfordNERModel(options.models, options.etype)
                elif options.crf == "crfsuite":
                    model = CrfSuiteModel(options.models, options.etype)
                model.load_tagger()
                model.load_data(corpus, feature_extractors.keys(), mode="test")
                final_results = model.test(corpus)
            #with codecs.open(options.output[1] + ".txt", 'w', 'utf-8') as outfile:
            #    lines = final_results.corpus.write_chemdner_results(options.models, outfile)
            #final_results.lines = lines
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_matcher":
            if "mirna" in options.models:
                model = MirnaMatcher(options.models)
            else:
                model = MatcherModel(options.models)
            results = ResultsNER(options.models)
            results.corpus, results.entities = model.test(corpus)
            allentities = set()
            for e in results.entities:
                allentities.add(results.entities[e].text)
            with codecs.open(options.output[1] + ".txt", 'w',
                             'utf-8') as outfile:
                outfile.write('\n'.join(allentities))

            results.save(options.output[1] + ".pickle")
        elif options.actions == "test_multiple":
            logging.info("testing with multiple classifiers... {}".format(
                ' '.join(options.submodels)))
            allresults = ResultSetNER(corpus, options.output[1])
            if len(options.submodels) < 2:
                models = TaggerCollection(basepath=options.models)
                models.load_models()
                results = models.test_types(corpus)
                final_results = results.combine_results()
            else:
                base_port = 9191
                for submodel in options.submodels:
                    models = TaggerCollection(basepath=options.models + "_" +
                                              submodel,
                                              baseport=base_port)
                    models.load_models()
                    results = models.test_types(corpus)
                    logging.info("combining results...")
                    submodel_results = results.combine_results()
                    allresults.add_results(submodel_results)
                    base_port += len(models.models)
                final_results = allresults.combine_results()
            logging.info("saving results...")
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_relations":
            if options.kernel == "jsre":
                model = JSREKernel(corpus, options.ptype, train=False)
            elif options.kernel == "svmtk":
                model = SVMTKernel(corpus, options.ptype)
            elif options.kernel == "rules":
                model = RuleClassifier(corpus, options.ptype)
            elif options.kernel == "stanfordre":
                model = StanfordRE(corpus, options.ptype)
            elif options.kernel == "scikit":
                model = ScikitRE(corpus, options.ptype)
            elif options.kernel == "crf":
                model = CrfSuiteRE(corpus, options.ptype, test=True)
            model.load_classifier()
            model.test()
            results = model.get_predictions(corpus)
            results.save(options.output[1] + ".pickle")

    total_time = time.time() - start_time
    logging.info("Total time: %ss" % total_time)
Esempio n. 3
0
def main():
    start_time = time.time()
    parser = argparse.ArgumentParser(description='')
    parser.add_argument("actions",
                        default="classify",
                        help="Actions to be performed.")
    parser.add_argument(
        "--goldstd",
        default="",
        dest="goldstd",
        nargs="+",
        help="Gold standard to be used. Will override corpus, annotations",
        choices=paths.keys())
    parser.add_argument("--submodels",
                        default="",
                        nargs='+',
                        help="sub types of classifiers"),
    parser.add_argument("--models",
                        dest="models",
                        help="model destination path, without extension")
    parser.add_argument("--pairtype",
                        dest="ptype",
                        help="type of pairs to be considered",
                        default="all")
    parser.add_argument("--doctype",
                        dest="doctype",
                        help="type of document to be considered",
                        default="all")
    parser.add_argument(
        "-o",
        "--output",
        "--format",
        dest="output",
        nargs=2,
        help="format path; output formats: xml, html, tsv, text, chemdner.")
    parser.add_argument("--log",
                        action="store",
                        dest="loglevel",
                        default="WARNING",
                        help="Log level")
    parser.add_argument("--kernel",
                        action="store",
                        dest="kernel",
                        default="svmtk",
                        help="Kernel for relation extraction")
    options = parser.parse_args()

    # set logger
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    while len(logging.root.handlers) > 0:
        logging.root.removeHandler(logging.root.handlers[-1])
    logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s'
    logging.basicConfig(level=numeric_level, format=logging_format)
    logging.getLogger().setLevel(numeric_level)
    logging.getLogger("requests.packages").setLevel(30)
    logging.info("Processing action {0} on {1}".format(options.actions,
                                                       options.goldstd))

    # set configuration variables based on the goldstd option if the corpus has a gold standard,
    # or on corpus and annotation options
    # pre-processing options
    if options.actions == "load_corpus":
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_format = paths[options.goldstd]["format"]
        corpus_path = paths[options.goldstd]["text"]
        corpus_ann = paths[options.goldstd]["annotations"]

        corenlp_client = StanfordCoreNLP('http://localhost:9000')
        # corpus = load_corpus(options.goldstd, corpus_path, corpus_format, corenlp_client)
        corpus = SeeDevCorpus(corpus_path)
        corpus.load_corpus(corenlp_client)
        corpus.save(paths[options.goldstd]["corpus"])
        if corpus_ann:  #add annotation if it is not a test set
            corpus.load_annotations(corpus_ann, "all")
            corpus.save(paths[options.goldstd]["corpus"])

    elif options.actions == "annotate":  # rext-add annotation to corpus
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_path = paths[options.goldstd]["corpus"]
        corpus_ann = paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        logging.debug("loading annotations...")
        # corpus.clear_annotations("all")
        corpus.load_annotations(corpus_ann, "all", options.ptype)
        # corpus.get_invalid_sentences()
        corpus.save(paths[options.goldstd]["corpus"])
    else:
        #corpus = SeeDevCorpus("corpus/" + "&".join(options.goldstd))
        corpus_path = paths[options.goldstd[0]]["corpus"]
        logging.info("loading corpus %s" % corpus_path)
        basecorpus = pickle.load(open(corpus_path, 'rb'))
        corpus = SeeDevCorpus(corpus_path)
        corpus.documents = basecorpus.documents
        if options.actions == "add_sentences":
            corpus.add_more_sentences(options.models)
        elif options.actions == "add_goldstandard":
            corpus.convert_entities_to_goldstandard()
            corpus.find_ds_relations()
            #corpus.save(config.paths[options.goldstd[0]]["corpus"])
        elif options.actions == "train_multiple":  # Train one classifier for each type of entity in this corpus
            # logging.info(corpus.subtypes)
            models = TaggerCollection(basepath=options.models,
                                      corpus=corpus,
                                      subtypes=all_entity_types)
            models.train_types()
        elif options.actions == "train_relations":
            if options.ptype == "all":
                ptypes = pair_types.keys()
                # ptypes = config.event_types.keys()
            else:
                ptypes = [options.ptype]
            for p in ptypes:
                print p
                if options.kernel == "jsre":
                    model = JSREKernel(corpus, p, train=True)
                elif options.kernel == "svmtk":
                    model = SVMTKernel(corpus, p)
                elif options.kernel == "stanfordre":
                    model = StanfordRE(corpus, p)
                elif options.kernel == "multir":
                    model = MultiR(corpus, p)
                elif options.kernel == "scikit":
                    model = ScikitRE(corpus, p)
                elif options.kernel == "crf":
                    model = CrfSuiteRE(corpus, p)
                # model.train()
        # testing
        elif options.actions == "test_multiple":
            logging.info("testing with multiple classifiers... {}".format(
                ' '.join(options.submodels)))
            models = TaggerCollection(basepath=options.models,
                                      subtypes=all_entity_types)
            models.load_models()
            results = models.test_types(corpus)
            final_results = results.combine_results()
            logging.info("saving results...")
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_relations":
            if options.ptype == "all":
                ptypes = pair_types.keys()
                # ptypes = config.event_types.keys()
                all_results = ResultsRE(options.output[1])
                all_results.corpus = corpus
                all_results.path = options.output[1]
            else:
                ptypes = [options.ptype]
            for p in ptypes:
                print p
                if options.kernel == "jsre":
                    model = JSREKernel(corpus, p, train=False)
                elif options.kernel == "svmtk":
                    model = SVMTKernel(corpus, p)
                elif options.kernel == "rules":
                    model = RuleClassifier(corpus, p)
                elif options.kernel == "stanfordre":
                    model = StanfordRE(corpus, p)
                elif options.kernel == "scikit":
                    model = ScikitRE(corpus, p)
                elif options.kernel == "crf":
                    model = CrfSuiteRE(corpus, p, test=True)
                model.load_classifier()
                model.test()
                results = model.get_predictions(corpus)
                # results.save(options.output[1] + "_" + p.lower() + ".pickle")
                # results.load_corpus(options.goldstd[0])
                results.path = options.output[1] + "_" + p.lower()
                goldset = get_gold_ann_set(
                    paths[options.goldstd[0]]["format"],
                    paths[options.goldstd[0]]["annotations"], "all", p,
                    paths[options.goldstd[0]]["text"])
                get_relations_results(results, options.models, goldset[1], [],
                                      [])
                if options.ptype == "all":
                    for did in results.document_pairs:
                        if did not in all_results.document_pairs:
                            all_results.document_pairs[did] = Pairs(did=did)
                        all_results.document_pairs[
                            did].pairs += results.document_pairs[did].pairs
            if options.ptype == "all":
                goldset = get_gold_ann_set(
                    paths[options.goldstd[0]]["format"],
                    paths[options.goldstd[0]]["annotations"], "all", "all",
                    paths[options.goldstd[0]]["text"])
                get_relations_results(all_results, options.models, goldset[1],
                                      [], [])
                write_seedev_results(all_results, options.output[1])
        elif options.actions == "train_sentences":  #and evaluate
            if options.ptype == "all":
                avg = [0, 0, 0]
                for p in pair_types:
                    print p
                    tps, fps, fns = corpus.train_sentence_classifier(p)
                    if tps == 0 and fns == 0:
                        precision, recall, fscore = 0, 1, 1
                    else:
                        precision = 1.0 * tps / (fps + tps)
                        recall = 1.0 * fns / (fns + tps)
                        fscore = 2.0 * precision * recall / (recall +
                                                             precision)
                    print precision, recall, fscore
                    avg[0] += tps
                    avg[1] += fps
                    avg[2] += fns
                #print [a/len(config.pair_types) for a in avg]
                precision = 1.0 * avg[1] / (avg[0] + avg[1])
                recall = 1.0 * avg[2] / (avg[0] + avg[2])
                fscore = 2.0 * precision * recall / (recall + precision)
                print precision, recall, fscore
            else:
                res = corpus.train_sentence_classifier(options.ptype)
                print res
            corpus.save(paths[options.goldstd[0]]["corpus"])
        elif options.actions == "test_sentences":  #and evaluate
            if options.ptype == "all":
                avg = [0, 0, 0]
                for p in pair_types:
                    print p
                    tps, fps, fns = corpus.test_sentence_classifier(p)
                if tps == 0 and fns == 0:
                    precision, recall, fscore = 0, 1, 1
                else:
                    precision = 1.0 * tps / (fps + tps)
                    recall = 1.0 * fns / (fns + tps)
                    fscore = 2.0 * precision * recall / (recall + precision)
                print precision, recall, fscore
                avg[0] += tps
                avg[1] += fps
                avg[2] += fns
            #print [a/len(config.pair_types) for a in avg]
            precision = 1.0 * avg[1] / (avg[0] + avg[1])
            recall = 1.0 * avg[2] / (avg[0] + avg[2])
            fscore = 2.0 * precision * recall / (recall + precision)
            print precision, recall, fscore
        #else:
        #    res = corpus.test_sentence_classifier(options.ptype)
        #    print res
        elif options.actions == "evaluate_ner":
            if os.path.exists(options.output[1] + ".pickle"):
                results = pickle.load(open(options.output[1] + ".pickle",
                                           'rb'))
                results.load_corpus(options.goldstd[0])
                results.path = options.output[1]
            logging.info("loading gold standard %s" %
                         paths[options.goldstd[0]]["annotations"])
            for t in all_entity_types:
                print t
                results.path = options.output[1] + "_" + t
                goldset = get_gold_ann_set(
                    paths[options.goldstd[0]]["format"],
                    paths[options.goldstd[0]]["annotations"], t, options.ptype,
                    paths[options.goldstd[0]]["text"])
                get_results(results, options.models + "_" + t, goldset[0], {},
                            {})

        corpus.save(paths[options.goldstd[0]]["corpus"])

    total_time = time.time() - start_time
    logging.info("Total time: %ss" % total_time)
Esempio n. 4
0
def main():
    start_time = time.time()
    parser = argparse.ArgumentParser(description='')
    parser.add_argument("actions", default="classify",  help="Actions to be performed.")
    parser.add_argument("--goldstd", default="", dest="goldstd", nargs="+",
                        help="Gold standard to be used. Will override corpus, annotations",
                        choices=paths.keys())
    parser.add_argument("--submodels", default="", nargs='+', help="sub types of classifiers"),
    parser.add_argument("--models", dest="models", help="model destination path, without extension")
    parser.add_argument("--pairtype", dest="ptype", help="type of pairs to be considered", default="all")
    parser.add_argument("--doctype", dest="doctype", help="type of document to be considered", default="all")
    parser.add_argument("-o", "--output", "--format", dest="output",
                        nargs=2, help="format path; output formats: xml, html, tsv, text, chemdner.")
    parser.add_argument("--log", action="store", dest="loglevel", default="WARNING", help="Log level")
    parser.add_argument("--kernel", action="store", dest="kernel", default="svmtk", help="Kernel for relation extraction")
    options = parser.parse_args()

    # set logger
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    while len(logging.root.handlers) > 0:
        logging.root.removeHandler(logging.root.handlers[-1])
    logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s'
    logging.basicConfig(level=numeric_level, format=logging_format)
    logging.getLogger().setLevel(numeric_level)
    logging.getLogger("requests.packages").setLevel(30)
    logging.info("Processing action {0} on {1}".format(options.actions, options.goldstd))

    # set configuration variables based on the goldstd option if the corpus has a gold standard,
    # or on corpus and annotation options
    # pre-processing options
    if options.actions == "load_corpus":
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_format = paths[options.goldstd]["format"]
        corpus_path = paths[options.goldstd]["text"]
        corpus_ann = paths[options.goldstd]["annotations"]

        corenlp_client = StanfordCoreNLP('http://localhost:9000')
        # corpus = load_corpus(options.goldstd, corpus_path, corpus_format, corenlp_client)
        corpus = SeeDevCorpus(corpus_path)
        corpus.load_corpus(corenlp_client)
        corpus.save(paths[options.goldstd]["corpus"])
        if corpus_ann: #add annotation if it is not a test set
            corpus.load_annotations(corpus_ann, "all")
            corpus.save(paths[options.goldstd]["corpus"])

    elif options.actions == "annotate": # rext-add annotation to corpus
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_path = paths[options.goldstd]["corpus"]
        corpus_ann = paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        logging.debug("loading annotations...")
        # corpus.clear_annotations("all")
        corpus.load_annotations(corpus_ann, "all", options.ptype)
        # corpus.get_invalid_sentences()
        corpus.save(paths[options.goldstd]["corpus"])
    else:
        #corpus = SeeDevCorpus("corpus/" + "&".join(options.goldstd))
        corpus_path = paths[options.goldstd[0]]["corpus"]
        logging.info("loading corpus %s" % corpus_path)
        basecorpus = pickle.load(open(corpus_path, 'rb'))
        corpus = SeeDevCorpus(corpus_path)
        corpus.documents = basecorpus.documents
        if options.actions == "add_sentences":
            corpus.add_more_sentences(options.models)
        elif options.actions == "add_goldstandard":
            corpus.convert_entities_to_goldstandard()
            corpus.find_ds_relations()
            #corpus.save(config.paths[options.goldstd[0]]["corpus"])
        elif options.actions == "train_multiple":  # Train one classifier for each type of entity in this corpus
            # logging.info(corpus.subtypes)
            models = TaggerCollection(basepath=options.models, corpus=corpus, subtypes=all_entity_types)
            models.train_types()
        elif options.actions == "train_relations":
            if options.ptype == "all":
                ptypes = pair_types.keys()
                # ptypes = config.event_types.keys()
            else:
                ptypes = [options.ptype]
            for p in ptypes:
                print p
                if options.kernel == "jsre":
                    model = JSREKernel(corpus, p, train=True)
                elif options.kernel == "svmtk":
                    model = SVMTKernel(corpus, p)
                elif options.kernel == "stanfordre":
                    model = StanfordRE(corpus, p)
                elif options.kernel == "multir":
                    model = MultiR(corpus, p)
                elif options.kernel == "scikit":
                    model = ScikitRE(corpus, p)
                elif options.kernel == "crf":
                    model = CrfSuiteRE(corpus, p)
                # model.train()
        # testing
        elif options.actions == "test_multiple":
            logging.info("testing with multiple classifiers... {}".format(' '.join(options.submodels)))
            models = TaggerCollection(basepath=options.models, subtypes=all_entity_types)
            models.load_models()
            results = models.test_types(corpus)
            final_results = results.combine_results()
            logging.info("saving results...")
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_relations":
            if options.ptype == "all":
                ptypes = pair_types.keys()
                # ptypes = config.event_types.keys()
                all_results = ResultsRE(options.output[1])
                all_results.corpus = corpus
                all_results.path = options.output[1]
            else:
                ptypes = [options.ptype]
            for p in ptypes:
                print p
                if options.kernel == "jsre":
                    model = JSREKernel(corpus, p, train=False)
                elif options.kernel == "svmtk":
                    model = SVMTKernel(corpus, p)
                elif options.kernel == "rules":
                    model = RuleClassifier(corpus, p)
                elif options.kernel == "stanfordre":
                    model = StanfordRE(corpus, p)
                elif options.kernel == "scikit":
                    model = ScikitRE(corpus, p)
                elif options.kernel == "crf":
                    model = CrfSuiteRE(corpus, p, test=True)
                model.load_classifier()
                model.test()
                results = model.get_predictions(corpus)
                # results.save(options.output[1] + "_" + p.lower() + ".pickle")
                # results.load_corpus(options.goldstd[0])
                results.path = options.output[1] + "_" + p.lower()
                goldset = get_gold_ann_set(paths[options.goldstd[0]]["format"], paths[options.goldstd[0]]["annotations"],
                                       "all", p, paths[options.goldstd[0]]["text"])
                get_relations_results(results, options.models, goldset[1],[], [])
                if options.ptype == "all":
                    for did in results.document_pairs:
                        if did not in all_results.document_pairs:
                            all_results.document_pairs[did] = Pairs(did=did)
                        all_results.document_pairs[did].pairs += results.document_pairs[did].pairs
            if options.ptype == "all":
                goldset = get_gold_ann_set(paths[options.goldstd[0]]["format"], paths[options.goldstd[0]]["annotations"],
                                       "all", "all", paths[options.goldstd[0]]["text"])
                get_relations_results(all_results, options.models, goldset[1],[], [])
                write_seedev_results(all_results, options.output[1])
        elif options.actions == "train_sentences": #and evaluate
            if options.ptype == "all":
                avg = [0,0,0]
                for p in pair_types:
                    print p
                    tps, fps, fns = corpus.train_sentence_classifier(p)
                    if tps == 0 and fns == 0:
                        precision, recall, fscore = 0, 1, 1
                    else:
                        precision = 1.0 * tps / (fps + tps)
                        recall = 1.0 * fns / (fns + tps)
                        fscore = 2.0 * precision * recall / (recall + precision)
                    print precision, recall, fscore
                    avg[0] += tps
                    avg[1] += fps
                    avg[2] += fns
                #print [a/len(config.pair_types) for a in avg]
                precision = 1.0 * avg[1] / (avg[0] + avg[1])
                recall = 1.0 * avg[2] / (avg[0] + avg[2])
                fscore = 2.0 * precision * recall / (recall + precision)
                print precision, recall, fscore
            else:
                res = corpus.train_sentence_classifier(options.ptype)
                print res
            corpus.save(paths[options.goldstd[0]]["corpus"])
        elif options.actions == "test_sentences": #and evaluate
            if options.ptype == "all":
                avg = [0,0,0]
                for p in pair_types:
                    print p
                    tps, fps, fns = corpus.test_sentence_classifier(p)
                if tps == 0 and fns == 0:
                    precision, recall, fscore = 0, 1, 1
                else:
                    precision = 1.0 * tps / (fps + tps)
                    recall = 1.0 * fns / (fns + tps)
                    fscore = 2.0 * precision * recall / (recall + precision)
                print precision, recall, fscore
                avg[0] += tps
                avg[1] += fps
                avg[2] += fns
            #print [a/len(config.pair_types) for a in avg]
            precision = 1.0 * avg[1] / (avg[0] + avg[1])
            recall = 1.0 * avg[2] / (avg[0] + avg[2])
            fscore = 2.0 * precision * recall / (recall + precision)
            print precision, recall, fscore
        #else:
        #    res = corpus.test_sentence_classifier(options.ptype)
        #    print res
        elif options.actions == "evaluate_ner":
            if os.path.exists(options.output[1] + ".pickle"):
                results = pickle.load(open(options.output[1] + ".pickle", 'rb'))
                results.load_corpus(options.goldstd[0])
                results.path = options.output[1]
            logging.info("loading gold standard %s" % paths[options.goldstd[0]]["annotations"])
            for t in all_entity_types:
                print t
                results.path = options.output[1] + "_" + t
                goldset = get_gold_ann_set(paths[options.goldstd[0]]["format"],
                                           paths[options.goldstd[0]]["annotations"],
                                           t, options.ptype, paths[options.goldstd[0]]["text"])
                get_results(results, options.models + "_" + t, goldset[0], {}, {})

        corpus.save(paths[options.goldstd[0]]["corpus"])


    total_time = time.time() - start_time
    logging.info("Total time: %ss" % total_time)
Esempio n. 5
0
class IICEServer(object):

    def __init__(self, basemodel, ensemble_model, submodels):
        self.corenlp = StanfordCoreNLP(config.corenlp_dir)
        self.basemodel = basemodel
        self.ensemble_model = ensemble_model
        self.subtypes = submodels
        self.models = TaggerCollection(basepath=self.basemodel)
        self.models.load_models()
        self.ensemble = EnsembleNER(self.ensemble_model, None, self.basemodel + "_combined", types=self.subtypes,
                                   features=[])
        self.ensemble.load()

    def hello(self):
        return "Hello World!"

    def process_pubmed(self, pmid):
        title, text = pubmed.get_pubmed_abs(pmid)

    def id_generator(self, size=6, chars=string.ascii_uppercase + string.digits):
        return ''.join(random.choice(chars) for _ in range(size))

    def process_multiple(self):
        bottle.response.content_type = "application/json"
        data = bottle.request.json
        text = data["text"]
        format = data["format"]
        test_corpus = self.generate_corpus(text)
        multiple_results = self.models.test_types(test_corpus)
        final_results = multiple_results.combine_results()
        final_results = add_chebi_mappings(final_results, self.basemodel)
        final_results = add_ssm_score(final_results, self.basemodel)
        final_results.combine_results(self.basemodel, self.basemodel + "_combined")

        # self.ensemble.generate_data(final_results, supervisioned=False)
        #self.ensemble.test()
        # ensemble_results = ResultsNER(self.basemodel + "_combined_ensemble")
        # ensemble_results.get_ensemble_results(self.ensemble, final_results.corpus, self.basemodel + "_combined")
        #output = get_output(final_results, basemodel + "_combined")
        results_id = self.id_generator()
        #output = self.get_output(ensemble_results, self.basemodel + "_combined_ensemble", format, id=results_id)
        output = self.get_output(final_results, self.basemodel + "_combined", format=format, results_id=results_id)
        #self.models.load_models()
        self.clean_up()
        # save corpus to pickel and add ID to the output as corpusfile
        pickle.dump(final_results.corpus, open("temp/{}.pickle".format(results_id), 'w'))
        return output

    def clean_up(self):

        for m in self.models.models:
            self.models.models[m].reset()
        self.models.basemodel.reset()

    def process(self, text="", modeltype="all"):
        test_corpus = self.generate_corpus(text)
        model = SimpleTaggerModel("models/chemdner_train_f13_lbfgs_" + modeltype)
        model.load_tagger()
        # load data into the model format
        model.load_data(test_corpus, feature_extractors.keys())
        # run the classifier on the data
        results = model.test(stats=False)
        #results = ResultsNER("models/chemdner_train_f13_lbfgs_" + modeltype)
        # process the results
        #results.get_ner_results(test_corpus, model)
        output = self.get_output(results, "models/chemdner_train_f13_lbfgs_" + modeltype)
        return output

    def get_relations(self):
        """
        Process the results dictionary, identify relations
        :return: results dictionary with relations
        """
        data = bottle.request.json
        # logging.debug(str(data))
        if "corpusfile" in data:
            corpus = pickle.load(open("temp/{}.pickle".format(data["corpusfile"])))
            logging.info("loaded corpus {}".format(data["corpusfile"]))
        else:
            # create corpus
            corpus = None
            pass
        did = "d0"
        #for sentence in data["abstract"]["sentences"]:
        for sentence in corpus.documents["d0"].sentences[1:]:
            sentence_pairs = []
            sentence_entities = sentence.entities.elist[self.basemodel + "_combined"]
            # logging.info("sentence entities:" + str(sentence_entities))
            sid = sentence.sid
            for i1, e1 in enumerate(sentence_entities):
                logging.info("sentence entities:" + str(e1))
                if i1 < len(sentence_entities)-1:
                    for i2, e2 in enumerate(sentence_entities[i1+1:]):
                        logging.info("sentence entities:" + str(e2))
                        pid = sentence.sid + ".p{}".format(len(sentence_pairs))
                        newpair = Pair(entities=[e1, e2], sid=sid, pid=pid, did=did)
                        sentence_pairs.append(newpair)
                        sentence.pairs.pairs[pid] = newpair
            logging.info(str(sentence_pairs))
            if len(sentence_pairs) > 0:
                corpus.documents[did].get_sentence(sid).test_relations(sentence_pairs, self.basemodel + "_combined")


        return data

    def generate_corpus(self, text):
        """
        Create a corpus object from the input text.
        :param text:
        :return:
        """
        test_corpus = Corpus("")
        newdoc = Document(text, process=False, did="d0", title="Test document")
        newdoc.sentence_tokenize("biomedical")
        newdoc.process_document(self.corenlp, "biomedical")
        test_corpus.documents["d0"] = newdoc
        return test_corpus

    def get_output(self, results, model_name, format="bioc", results_id=None):
        if format == "bioc":
            a = ET.Element('collection')
            bioc = results.corpus.documents["d0"].write_bioc_results(a, model_name)
            rough_string = ET.tostring(a, 'utf-8')
            reparsed = minidom.parseString(rough_string)
            output = reparsed.toprettyxml(indent="\t")
        elif format == "chemdner":
             with codecs.open("/dev/null", 'w', 'utf-8') as outfile:
                lines = results.corpus.write_chemdner_results(model_name, outfile)
                output = ""
                for l in lines:
                    output += ' '.join(l) + " "
        else: # default should be json
            results_dic = results.corpus.documents["d0"].get_dic(model_name)
            results_dic["corpusfile"] = results_id
            output = json.dumps(results_dic)
        return output
Esempio n. 6
0
def main():
    start_time = time.time()
    parser = argparse.ArgumentParser(description='')
    parser.add_argument("actions", default="classify",  help="Actions to be performed.",
                      choices=["load_corpus", "annotate", "classify", "write_results", "write_goldstandard",
                               "train", "test", "train_multiple", "test_multiple", "train_matcher", "test_matcher",
                               "crossvalidation", "train_relations", "test_relations", "load_genia", "load_biomodel",
                               "merge_corpus"])
    parser.add_argument("--goldstd", default="", dest="goldstd", nargs="+",
                        help="Gold standard to be used. Will override corpus, annotations",
                        choices=paths.keys())
    parser.add_argument("--submodels", default="", nargs='+', help="sub types of classifiers"),
    parser.add_argument("-i", "--input", dest="input", action="store",
                      default='''Administration of a higher dose of indinavir should be \\
considered when coadministering with megestrol acetate.''',
                      help="Text to classify.")
    parser.add_argument("--corpus", dest="corpus", nargs=2,
                      default=["chemdner", "CHEMDNER/CHEMDNER_SAMPLE_JUNE25/chemdner_sample_abstracts.txt"],
                      help="format path")
    parser.add_argument("--annotations", dest="annotations")
    parser.add_argument("--tag", dest="tag", default="0", help="Tag to identify the experiment")
    parser.add_argument("--models", dest="models", help="model destination path, without extension")
    parser.add_argument("--entitytype", dest="etype", help="type of entities to be considered", default="all")
    parser.add_argument("--pairtype", dest="ptype", help="type of pairs to be considered", default="all")
    parser.add_argument("--doctype", dest="doctype", help="type of document to be considered", default="all")
    parser.add_argument("--annotated", action="store_true", default=False, dest="annotated",
                      help="True if the input has <entity> tags.")
    parser.add_argument("-o", "--output", "--format", dest="output",
                        nargs=2, help="format path; output formats: xml, html, tsv, text, chemdner.")
    parser.add_argument("--crf", dest="crf", help="CRF implementation", default="stanford",
                        choices=["stanford", "crfsuite", "banner"])
    parser.add_argument("--log", action="store", dest="loglevel", default="WARNING", help="Log level")
    parser.add_argument("--kernel", action="store", dest="kernel", default="svmtk", help="Kernel for relation extraction")
    options = parser.parse_args()

    # set logger
    numeric_level = getattr(logging, options.loglevel.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % options.loglevel)
    while len(logging.root.handlers) > 0:
        logging.root.removeHandler(logging.root.handlers[-1])
    logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s'
    logging.basicConfig(level=numeric_level, format=logging_format)
    logging.getLogger().setLevel(numeric_level)
    logging.getLogger("requests.packages").setLevel(30)
    logging.info("Processing action {0} on {1}".format(options.actions, options.goldstd))

    # set configuration variables based on the goldstd option if the corpus has a gold standard,
    # or on corpus and annotation options
    # pre-processing options
    if options.actions == "load_corpus":
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_format = paths[options.goldstd]["format"]
        corpus_path = paths[options.goldstd]["text"]
        corpus_ann = paths[options.goldstd]["annotations"]

        corenlp_client = StanfordCoreNLP('http://localhost:9000')
        corpus = load_corpus(options.goldstd, corpus_path, corpus_format, corenlp_client)
        #corpus.load_genia() #TODO optional genia
        corpus.save(paths[options.goldstd]["corpus"])
        if corpus_ann: #add annotation if it is not a test set
            corpus.load_annotations(corpus_ann, options.etype, options.ptype)
            corpus.save(paths[options.goldstd]["corpus"])
    elif options.actions == "load_genia":
        options.goldstd = options.goldstd[0]
        corpus_path = paths[options.goldstd]["corpus"]
        corpus_ann = paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        corpus.load_genia()
        corpus.save(paths[options.goldstd]["corpus"])
    elif options.actions == "load_biomodel":
        options.goldstd = options.goldstd[0]
        corpus_path = paths[options.goldstd]["corpus"]
        corpus_ann = paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        corpus.load_biomodel()
        corpus.save(paths[options.goldstd]["corpus"])
    elif options.actions == "annotate": # rext-add annotation to corpus
        if len(options.goldstd) > 1:
            print "load only one corpus each time"
            sys.exit()
        options.goldstd = options.goldstd[0]
        corpus_path = paths[options.goldstd]["corpus"]
        corpus_ann = paths[options.goldstd]["annotations"]
        logging.info("loading corpus %s" % corpus_path)
        corpus = pickle.load(open(corpus_path, 'rb'))
        logging.debug("loading annotations...")
        corpus.clear_annotations(options.etype)
        corpus.load_annotations(corpus_ann, options.etype, options.ptype)
        # corpus.get_invalid_sentences()
        corpus.save(paths[options.goldstd]["corpus"])
    else:
        corpus = Corpus("corpus/" + "&".join(options.goldstd))
        for g in options.goldstd:
            corpus_path = paths[g]["corpus"]
            logging.info("loading corpus %s" % corpus_path)
            this_corpus = pickle.load(open(corpus_path, 'rb'))
            corpus.documents.update(this_corpus.documents)
        if options.actions == "write_goldstandard":
            model = BiasModel(options.output[1])
            model.load_data(corpus, [])
            results = model.test()
            #results = ResultsNER(options.output[1])
            #results.get_ner_results(corpus, model)
            results.save(options.output[1] + ".pickle")
            #logging.info("saved gold standard results to " + options.output[1] + ".txt")
        elif options.actions == "merge_corpus":
            corpus.save(paths[options.output[1]]["corpus"])
        # training
        elif options.actions == "train":
            if options.crf == "stanford":
                model = StanfordNERModel(options.models, options.etype)
            elif options.crf == "crfsuite":
                model = CrfSuiteModel(options.models, options.etype)
            model.load_data(corpus, feature_extractors.keys(), options.etype)
            model.train()
        elif options.actions == "train_matcher": # Train a simple classifier based on string matching
            model = MatcherModel(options.models)
            model.train(corpus)
            # TODO: term list option
            #model.train("TermList.txt")
        elif options.actions == "train_multiple": # Train one classifier for each type of entity in this corpus
            # logging.info(corpus.subtypes)
            models = TaggerCollection(basepath=options.models, corpus=corpus, subtypes=corpus.subtypes)
            models.train_types()
        elif options.actions == "train_relations":
            if options.kernel == "jsre":
                model = JSREKernel(corpus, options.ptype, modelname=options.tag)
            elif options.kernel == "svmtk":
                model = SVMTKernel(corpus, options.ptype, modelname=options.tag)
            #elif options.kernel == "stanfordre":
            #    model = StanfordRE(corpus, options.ptype)
            #elif options.kernel == "multir":
            #    model = MultiR(corpus, options.ptype)
            #elif options.kernel == "scikit":
            #    model = ScikitRE(corpus, options.ptype)
            #elif options.kernel == "crf":
            #    model = CrfSuiteRE(corpus, options.ptype)
            elif options.kernel == "mil":
                relations = set()
                with open("corpora/transmir/transmir_relations.txt") as rfile:
                    for l in rfile:
                        relations.add(tuple(l.strip().split('\t')))
                model = MILClassifier(corpus, options.ptype, relations, ner=options.models)
            model.train()
        # testing
        elif options.actions == "test":
            base_port = 9191
            if len(options.submodels) > 1:
                allresults = ResultSetNER(corpus, options.output[1])
                for i, submodel in enumerate(options.submodels):
                    model = StanfordNERModel(options.models + "_" + submodel)
                    model.load_tagger(base_port + i)
                    # load data into the model format
                    model.load_data(corpus, feature_extractors.keys(), mode="test")
                    # run the classifier on the data
                    results = model.test(corpus, port=base_port + i)
                    allresults.add_results(results)
                    model.kill_process()
                # save the results to an object that can be read again, and log files to debug
                final_results = allresults.combine_results()
            else:
                if options.crf == "stanford":
                    model = StanfordNERModel(options.models, options.etype)
                elif options.crf == "crfsuite":
                    model = CrfSuiteModel(options.models, options.etype)
                elif options.crf == "banner":
                    model = BANNERModel(options.models, options.etype)
                model.load_tagger()
                model.load_data(corpus, feature_extractors.keys(), mode="test")
                final_results = model.test(corpus)
            #with codecs.open(options.output[1] + ".txt", 'w', 'utf-8') as outfile:
            #    lines = final_results.corpus.write_chemdner_results(options.models, outfile)
            #final_results.lines = lines
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_matcher":
            if "mirna" in options.models:
                model = MirnaMatcher(options.models)
            else:
                model = MatcherModel(options.models)
            results = ResultsNER(options.models)
            results.corpus, results.entities = model.test(corpus)
            allentities = set()
            for e in results.entities:
                allentities.add(results.entities[e].text)
            with codecs.open(options.output[1] + ".txt", 'w', 'utf-8') as outfile:
                outfile.write('\n'.join(allentities))

            results.save(options.output[1] + ".pickle")
        elif options.actions == "test_multiple":
            logging.info("testing with multiple classifiers... {}".format(' '.join(options.submodels)))
            allresults = ResultSetNER(corpus, options.output[1])
            if len(options.submodels) < 2:
                models = TaggerCollection(basepath=options.models)
                models.load_models()
                results = models.test_types(corpus)
                final_results = results.combine_results()
            else:
                base_port = 9191
                for submodel in options.submodels:
                    models = TaggerCollection(basepath=options.models + "_" + submodel, baseport = base_port)
                    models.load_models()
                    results = models.test_types(corpus)
                    logging.info("combining results...")
                    submodel_results = results.combine_results()
                    allresults.add_results(submodel_results)
                    base_port += len(models.models)
                final_results = allresults.combine_results()
            logging.info("saving results...")
            final_results.save(options.output[1] + ".pickle")
        elif options.actions == "test_relations":
            if options.kernel == "jsre":
                model = JSREKernel(corpus, options.ptype, train=False, modelname=options.tag, ner=options.models)
            elif options.kernel == "svmtk":
                model = SVMTKernel(corpus, options.ptype, modelname=options.tag, ner=options.models)
            elif options.kernel == "rules":
                model = RuleClassifier(corpus, options.ptype, ner=options.models)
            elif options.kernel == "mirtex_rules":
                model = MirtexClassifier(corpus, options.ptype)
            elif options.kernel == "stanfordre":
                model = StanfordRE(corpus, options.ptype)
            elif options.kernel == "scikit":
                model = ScikitRE(corpus, options.ptype)
            elif options.kernel == "crf":
                model = CrfSuiteRE(corpus, options.ptype, test=True)
            elif options.kernel == "mil":
                relations = set()
                with open("corpora/transmir/transmir_relations.txt") as rfile:
                    for l in rfile:
                        relations.add(tuple(l.strip().split('\t')))
                model = MILClassifier(corpus, options.ptype, relations, test=True, ner=options.models)
            model.load_classifier()
            model.test()
            results = model.get_predictions(corpus)
            results.save(options.output[1] + ".pickle")

    total_time = time.time() - start_time
    logging.info("Total time: %ss" % total_time)