Esempio n. 1
0
def load_sites_feeds():
    from tech_rss.models import Site
    fix_multiprocessing()

    clf = Classifier()
    for site in Site.objects.all():
        print('Starting {}'.format(site.domain))
        news = site.get_new_news()

        if not news:
            continue

        categories = clf.predict(news)
        for category, page in zip(categories, news):
            print(CATEGORIES_SHORT[category])
            print(page['title'], '\n')

            url, title = save_post(category, page, site)

            users = site.users.filter(categories__contains=[category])
            users_id = [getattr(user, 'id') for user in users]

            send_post_to_subscribers(TelegramBot, users_id, url, title)
Esempio n. 2
0
def load_sites_feeds():
    from tech_rss.models import Site
    fix_multiprocessing()

    clf = Classifier()
    for site in Site.objects.all():
        print('Starting {}'.format(site.domain))
        news = site.get_new_news()

        if not news:
            continue

        categories = clf.predict(news)
        for category, page in zip(categories, news):
            print(CATEGORIES_SHORT[category])
            print(page['title'], '\n')

            url, title = save_post(category, page, site)

            users = site.users.filter(categories__contains=[category])
            users_id = [getattr(user, 'id') for user in users]

            send_post_to_subscribers(TelegramBot, users_id, url, title)
Esempio n. 3
0
def main(*args):
    """Predict the top K classes of an image.

    Args:
        *args: args to be parsed by the ArgumentParser

    Returns:
        None
    """
    # Instantiating with formatter_class argument will make default values print
    # in the help message.
    parser = argparse.ArgumentParser(
        description='Process an image & report results.',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        'image_path',
        type=str,
        help=('path to the image to process or to a dataset ' +
              'directory with images to choose randomly from ' +
              'Ex: flowers/test/1/image_06743.jpg or ' + 'flowers/test'))
    parser.add_argument('checkpoint',
                        type=str,
                        help='path to the model checkpoint to load')
    parser.add_argument('--top_k',
                        type=int,
                        default=1,
                        help='Return top K most likely classes')
    parser.add_argument('--category_names',
                        type=str,
                        help='use a mapping of categories to real names')
    parser.add_argument('--gpu',
                        action='store_true',
                        help=('if available, use gpu to process the image ' +
                              'instead of the cpu'))
    args = parser.parse_args(args)

    if os.path.isdir(args.image_path):
        print(f'{args.image_path} is a directory.',
              'Choosing a random image to process.')
        image_path = get_random_image_from_dir(args.image_path)
        print(f'Using image: {image_path}')
    else:
        image_path = args.image_path

    if not os.path.isfile(args.checkpoint):
        print(f'ERROR: {args.checkpoint} is not a file.', file=sys.stderr)
        sys.exit(-1)

    if args.category_names:
        cat_to_name = load_json(args.category_names)
    else:
        cat_to_name = None

    if args.gpu:
        device = 'cuda'
        if not torch.cuda.is_available():
            print('ERROR: cuda is not available on this machine.',
                  'Use cpu for prediction instead.',
                  file=sys.stderr)
            sys.exit(-1)
    else:
        device = 'cpu'

    classifier = Classifier(checkpoint=args.checkpoint)
    probs, classes = classifier.predict(image_path,
                                        topk=args.top_k,
                                        device=device)

    if cat_to_name is not None:
        classes = [cat_to_name[c] for c in classes]
        class_len = len(max(cat_to_name.values(), key=len))
    else:
        class_len = 10  # padding needed to space column 1 title 'Class' below

    print(f'{"Class":{class_len}}{"Probability"}')
    for prob, class_ in zip(probs, classes):
        print(f'{class_:{class_len}}{prob:4.2f}')
Esempio n. 4
0
def main():

    ap = argparse.ArgumentParser()
    ap.add_argument("-v",
                    "--video",
                    required=True,
                    help="Path to the video file")
    ap.add_argument("-m",
                    "--main",
                    required=True,
                    help="json file main menu configuration")
    ap.add_argument("-i",
                    "--item",
                    required=True,
                    help="json file menu item configuration")
    ap.add_argument("-w",
                    "--write",
                    required=False,
                    help="output path for the result")
    args = vars(ap.parse_args())

    mainMenuConf = Conf(args['main'])
    menuItemConf = Conf(args['item'])
    (mainMenufeatureList,
     mainMenulabels) = h5_load_dataset(mainMenuConf['feature_file'],
                                       mainMenuConf['dataset_feature_name'])

    # read main menu class
    classInfo = []
    mainMenuClassName = None
    if (mainMenuConf['class'] != None):
        for name in open(mainMenuConf['class']).read().split("\n"):
            classInfo.append(name)
    if len(classInfo) != 0:
        mainMenuClassName = classInfo[0]
    else:
        mainMenuClassName = 'mainMenu'

    voc = pacasl_voc_reader(mainMenuConf['dataset_xml'])
    objectList = voc.getObjectList()
    for (className, mainMenuBox) in objectList:
        if (className == mainMenuClassName):
            break

    # read menu item class
    itemClassInfo = []
    if (menuItemConf['class'] != None):
        for name in open(menuItemConf['class']).read().split("\n"):
            itemClassInfo.append(name)

    voc = pacasl_voc_reader(menuItemConf['dataset_xml'])
    objectList = voc.getObjectList()
    for (className, itemBox) in objectList:
        if (className == itemClassInfo[0]):
            break

    itemClassifier = Classifier(menuItemConf['classifier_path'], "SVC")
    itemHOG = HOG(menuItemConf['orientations'],
                  menuItemConf['pixels_per_cell'],
                  menuItemConf['cells_per_block'],
                  True if menuItemConf['transform_sqrt'] == 1 else False,
                  menuItemConf['normalize'])

    imgReader = ImageReader(args['video'], True)
    hogParam = HOGParam(
        orientations=mainMenuConf['orientations'],
        pixels_per_cell=mainMenuConf['pixels_per_cell'],
        cells_per_block=mainMenuConf['cells_per_block'],
        transform_sqrt=True if mainMenuConf['transform_sqrt'] == 1 else False,
        block_norm=mainMenuConf['normalize'])

    if args['write'] != None:
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
        out = cv2.VideoWriter(args['write'], fourcc, 30.0, (1280, 720))

    mainMenuLoc = None
    mainMenuImg = None
    bFound = False
    frameCnt = 0
    searchRegion = None
    while True:
        (ret, frame, fname) = imgReader.read()
        if ret == False:
            break
        templateShape = [
            mainMenuBox[3] - mainMenuBox[1] + 1,
            mainMenuBox[2] - mainMenuBox[0] + 1
        ]
        frameOrigin = frame.copy()
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        key = ' '
        if (bFound == True):

            testImg = frame[mainMenuLoc[1]:mainMenuLoc[3],
                            mainMenuLoc[0]:mainMenuLoc[2]]
            e1 = cv2.getTickCount()
            (diff, ratio) = imgDiffRatio(testImg, mainMenuImg)
            e2 = cv2.getTickCount()
            time = (e2 - e1) / cv2.getTickFrequency()
            #print('[{}] ratio {}'.format(frameCnt, ratio))
            if (ratio < 0.1):
                bFound = True
                (x, y, w, h) = (mainMenuLoc[0], mainMenuLoc[1],
                                mainMenuLoc[2] - mainMenuLoc[0],
                                mainMenuLoc[3] - mainMenuLoc[1])
            else:
                bFound = False
        else:
            if searchRegion == None:
                searchRegion = tuple(mainMenuConf['mainMenuSearchRegion'])
            e1 = cv2.getTickCount()
            (bFound, val, (x, y, w, h)) = searchImageByHOGFeature(
                mainMenufeatureList[0],
                templateShape,
                frame,
                searchRegion,
                mainMenuConf['mainMenuHOGDistanceThreshold'],
                hogParam, (10, 10),
                bMP=False,
                bVisualize=False)
            e2 = cv2.getTickCount()
            time = (e2 - e1) / cv2.getTickFrequency()
            if bFound == True:
                frameDetectImg = frame[y:y + h, x:x + w]

        if bFound == True:
            print('[{}] search result time {}, loc = {}'.format(
                frameCnt, time, (x, y, w, h)))
            searchRegion = (x, y, x + w, y + h)
            mainMenuLoc = (x, y, x + w, y + h)
            mainMenuImg = frame[y:y + h, x:x + w]
            frameDetectImg = mainMenuImg
            cv2.rectangle(frameOrigin, (x, y), (x + w - 1, y + h - 1),
                          (0, 255, 0), 2)

            e1 = cv2.getTickCount()
            (rtn, (fx, fy, fw, fh)) = FrameDetectByOneImage(
                frameDetectImg,
                frameDetectImg,
                minW=200,
                minH=60,
                frameRatio=mainMenuConf['mainMenuFrameRectRatio'])
            e2 = cv2.getTickCount()
            time = (e2 - e1) / cv2.getTickFrequency()
            if rtn == True:
                fx = fx + x
                fy = fy + y
                cv2.rectangle(frameOrigin, (fx - 5, fy - 5),
                              (fx + fw + 5, fy + fh + 5), (255, 0, 0), 2)
                bh = itemBox[3] - itemBox[1] + 1
                bw = itemBox[2] - itemBox[0] + 1
                roi = frame[fy:fy + bh, fx:fx + bw]
                e1 = cv2.getTickCount()
                (feature, _) = itemHOG.describe(roi)
                predictIdx = itemClassifier.predict(feature)
                e2 = cv2.getTickCount()
                time = (e2 - e1) / cv2.getTickFrequency()
                print('    predict {} takes {}'.format(predictIdx, time))
                cv2.putText(frameOrigin, str(predictIdx),
                            (fx + fw + 10, fy + fh), cv2.FONT_HERSHEY_SIMPLEX,
                            2, (0, 0, 255), 3, cv2.LINE_AA)

            key = basics.showResizeImg(frameOrigin, 'result', 1)
            if args['write'] != None:
                out.write(frameOrigin)
        else:
            print('[{}] Not found, takes  {}'.format(frameCnt, time))
            key = basics.showResizeImg(frameOrigin, 'result', 1)
            if args['write'] != None:
                out.write(frameOrigin)

        if key == ord('q'):
            break
        frameCnt = frameCnt + 1

    if args['write'] != None:
        out.release()