Esempio n. 1
0
 def run_classifier(self, method, classifier):
     if method == 'classifier':
         self.classifier = Classifier(
             self.prepro.severity.keys(), self.prepro.X_train,
             self.prepro.y_train, self.prepro.X_test, self.prepro.y_test,
             self.prepro.train_size, self.prepro.test_size)
         self.classifier.classify(classifier)
     if method == 'pipeline':
         self.classifier = PipeLineClassifier(
             self.prepro.severity.keys(), self.prepro.train_corpus,
             self.prepro.y_train, self.prepro.X_test, self.prepro.y_test,
             self.prepro.train_size, self.prepro.test_size)
         self.classifier.setVariables(classifier)
         self.classifier.benchmark()
 def run_classifier(self, method, classifier):
     if method == 'classifier':
         self.classifier = Classifier(
             self.prepro.severity.keys(), self.prepro.X_train,
             self.prepro.y_train, self.prepro.X_test,
             self.prepro.y_test, self.prepro.train_size,
             self.prepro.test_size)
         self.classifier.classify(classifier)
     if method == 'pipeline':
         self.classifier = PipeLineClassifier(
             self.prepro.severity.keys(), self.prepro.train_corpus,
             self.prepro.y_train, self.prepro.X_test,
             self.prepro.y_test, self.prepro.train_size,
             self.prepro.test_size
         )
         self.classifier.setVariables(classifier)
         self.classifier.benchmark()
Esempio n. 3
0
class Project:
    def __init__(self, num_rows, wrt_feature):
        self.db = DB(db='major_2')
        data = Data(self.db)
        self.data_set = data.getData(num_rows, wrt_feature)

    def preprocess(self, new, vector, chi2):
        self.prepro = Preprocess(self.data_set, new)
        if new == 'True':
            if vector == 'hashing':
                self.prepro.hashVector()
            if vector == 'tfidf':
                self.prepro.tfidfVector()
            # print self.preprocess.y_train
        else:
            self.prepro.vectorize(vector)
        if chi2:
            self.prepro.chisquare()

    def run_classifier(self, method, classifier):
        if method == 'classifier':
            self.classifier = Classifier(
                self.prepro.severity.keys(), self.prepro.X_train,
                self.prepro.y_train, self.prepro.X_test, self.prepro.y_test,
                self.prepro.train_size, self.prepro.test_size)
            self.classifier.classify(classifier)
        if method == 'pipeline':
            self.classifier = PipeLineClassifier(
                self.prepro.severity.keys(), self.prepro.train_corpus,
                self.prepro.y_train, self.prepro.X_test, self.prepro.y_test,
                self.prepro.train_size, self.prepro.test_size)
            self.classifier.setVariables(classifier)
            self.classifier.benchmark()
class Project:
    def __init__(self, num_rows, wrt_feature):
    	self.db = DB(db='major_2')
    	data = Data(self.db)
    	self.data_set = data.getData(num_rows, wrt_feature)

    def preprocess(self, new, vector, chi2):
    	self.prepro = Preprocess(self.data_set, new)
        if new == 'True':
            if vector == 'hashing':
                self.prepro.hashVector()
            if vector == 'tfidf':
                self.prepro.tfidfVector()
            # print self.preprocess.y_train
        else:
            self.prepro.vectorize(vector)
        if chi2:
            self.prepro.chisquare()

    def run_classifier(self, method, classifier):
        if method == 'classifier':
            self.classifier = Classifier(
                self.prepro.severity.keys(), self.prepro.X_train,
                self.prepro.y_train, self.prepro.X_test,
                self.prepro.y_test, self.prepro.train_size,
                self.prepro.test_size)
            self.classifier.classify(classifier)
        if method == 'pipeline':
            self.classifier = PipeLineClassifier(
                self.prepro.severity.keys(), self.prepro.train_corpus,
                self.prepro.y_train, self.prepro.X_test,
                self.prepro.y_test, self.prepro.train_size,
                self.prepro.test_size
            )
            self.classifier.setVariables(classifier)
            self.classifier.benchmark()