Esempio n. 1
0
def followActionBasis(self, observedState, action):
	allowedDirections = observedState.getLegalPacmanActions()
	pacmanPosition = observedState.getPacmanPosition()

	if action == 'good':
		target = classifyGhosts.getNearestGoodGhost(observedState, self.distancer)
	elif action == 'bad':
		target = classifyGhosts.getNearestBadGhost(observedState, self.distancer)
	elif action == 'capsule':
		target = classifyCapsule.closest(observedState, self.distancer)
	else:
		raise Exception("Unknown action '%s' passed to action basis" % action)

	# find the direction that moves closes to target
	best_action = Directions.STOP
	best_dist = np.inf
	for la in allowedDirections:
		if la == Directions.STOP:
			continue
		successor_pos = Actions.getSuccessor(pacmanPosition,la)
		new_dist = self.distancer.getDistance(successor_pos,target)
		if new_dist < best_dist:
			best_action = la
			best_dist = new_dist
	return best_action
    def chooseAction(self, observedState):
        """
        Pacman will eat the nearest good capsule if the ghost is not scared,
        and chase the scared ghost otherwise.
        """

        pacmanPos = observedState.getPacmanPosition()
        ghost_states = observedState.getGhostStates() # states have getPosition() and getFeatures() methods
        legalActs = [a for a in observedState.getLegalPacmanActions()]

        # find the closest ghost by sorting the distances
        closeGhost = ghosts.closestGhost(observedState, self.distancer, good=False)
        # find the closest bad ghost by sorting the distances
        badGhost = ghosts.getNearestBadGhost(observedState, self.distancer)

        # position of closest good capsule to Pacman
        closeCapsule = capsule.closest(observedState, self.distancer)

        best_action = random.choice(legalActs)
        if observedState.scaredGhostPresent():
            # targets capsules and good ghosts on the way to the bad ghost
            target = mapH.subTarget(pacmanPos, badGhost, closeCapsule)
            target = mapH.subTarget(pacmanPos, target, closeGhost)
            for dir in mapH.getDirs(pacmanPos, target):
                if dir in legalActs:
                    return dir
        else:
            # sorts out directions that lead to any close ghost
            legalActs = [a for a in legalActs if a not in mapH.ghostDirs(pacmanPos, closeGhost)]
            for dir in mapH.getDirs(pacmanPos, closeCapsule):
                if dir in legalActs:
                    return dir
        return best_action
    def chooseAction(self, observedState):
        """
        Pacman will eat the nearest good capsule if the ghost is not scared,
        and eat good ghosts otherwise. Along the way, he will adjust his path to
        run into good ghosts.
        """

        pacmanPos = observedState.getPacmanPosition()
        legalActs = [a for a in observedState.getLegalPacmanActions()]

        # find the closest ghost by sorting the distances
        goodGhost = ghosts.closestGhost(observedState, self.distancer, good=True)
        # position of closest good capsule to Pacman
        closeCapsule = capsule.closest(observedState, self.distancer)

        best_action = random.choice(legalActs)
        if observedState.scaredGhostPresent():
            # targets capsules along the way
            target = mapH.subTarget(pacmanPos, goodGhost, closeCapsule)
            for dir in mapH.getDirs(pacmanPos, target):
                if dir in legalActs:
                    return dir
        else:
            # find the closest bad ghost by sorting the distances
            badGhost = ghosts.getNearestBadGhost(observedState, self.distancer)
            # sorts out directions that lead to the bad ghost
            legalActs = [a for a in legalActs if a not in mapH.ghostDirs(pacmanPos, badGhost)]
            # targets good ghosts along the way
            target = mapH.subTarget(pacmanPos, closeCapsule, goodGhost)
            for dir in mapH.getDirs(pacmanPos, closeCapsule):
                if dir in legalActs:
                    return dir
        return best_action
Esempio n. 4
0
def goodBadGhostCapsuleDistances(self,observedState):
	pacmanPosition = observedState.getPacmanPosition()
	goodGhost = classifyGhosts.getNearestGoodGhost(observedState, self.distancer)
	badGhost = classifyGhosts.getNearestBadGhost(observedState, self.distancer)
	capsule = classifyCapsule.closest(observedState, self.distancer)

	distBinner = xbinner( \
		(0,math.sqrt(observedState.layout.width**2 + observedState.layout.width**2)), \
		goodBadGhostCapsuleDistances.buckets )

	goodGhostDistance = distBinner(self.distancer.getDistance(pacmanPosition, goodGhost))
	badGhostDistance = distBinner(self.distancer.getDistance(pacmanPosition, badGhost))
	capsuleDistance = distBinner(self.distancer.getDistance(pacmanPosition, capsule))
	hasCapsule = observedState.scaredGhostPresent()
	return (goodGhostDistance,badGhostDistance,capsuleDistance,int(hasCapsule))
    def chooseAction(self, observedState):
        "Pacman will eat the nearest bad ghost. For testing purposes."

        pacmanPos = observedState.getPacmanPosition()
        ghost_states = observedState.getGhostStates() # states have getPosition() and getFeatures() methods
        legalActs = [a for a in observedState.getLegalPacmanActions()]

        # position of closest good capsule to Pacman
        badGhost = ghosts.getNearestBadGhost(observedState, self.distancer)

        best_action = random.choice(legalActs)
        for dir in mapH.getDirs(pacmanPos, badGhost):
            if dir in legalActs:
                return dir
        return best_action
Esempio n. 6
0
def localNeighborhood(self, observedState):
	radius = 4
	pacmanPosition = observedState.getPacmanPosition()

	xBinner = xbinner( (pacmanPosition[0]-radius, pacmanPosition[0]+radius), localNeighborhood.buckets )
	yBinner = xbinner( (pacmanPosition[1]-radius, pacmanPosition[1]+radius), localNeighborhood.buckets )

	goodGhost = classifyGhosts.getNearestGoodGhost(observedState, self.distancer)
	badGhost = classifyGhosts.getNearestBadGhost(observedState, self.distancer)
	capsule = classifyCapsule.closest(observedState, self.distancer)
	hasCapsule = observedState.scaredGhostPresent()


	print pacmanPosition, goodGhost, badGhost, capsule, hasCapsule

	# bin the x/y position for each object of interest 
	b = []
	for p in [goodGhost, badGhost, capsule]:
		b += [xBinner(p[0]), yBinner(p[1])]
	return tuple(b + [int(hasCapsule)])
Esempio n. 7
0
def ghostPosition(self,observedState):
	pacmanPosition = observedState.getPacmanPosition()
	ghost_positions = [ classifyGhosts.getNearestGoodGhost(observedState, self.distancer), classifyGhosts.getNearestBadGhost(observedState, self.distancer)]
	
	bins = 5
	xBinner = xbinner( (0,observedState.layout.width), bins )	
	yBinner = xbinner( (0,observedState.layout.height), bins )

	state = (xBinner(pacmanPosition[0]), yBinner(pacmanPosition[1]))
	for pos in ghost_positions:
		state += (xBinner(pos[0]),yBinner(pos[1]))
	
	return state