Esempio n. 1
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand'])
    pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'],
                                               args['save_name'])

    # load pretrain
    pretrain = Pretrain(pretrain_file)

    # load model
    print("Loading model from: {}".format(model_file))
    use_cuda = args['cuda'] and not args['cpu']

    trainer = Trainer(args=args,
                      pretrain=pretrain,
                      model_file=model_file,
                      use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    # load config
    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'
                                                              ] or k == 'mode':
            loaded_args[k] = args[k]

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    batch = DataLoader(args['eval_file'],
                       args['batch_size'],
                       loaded_args,
                       pretrain,
                       vocab=vocab,
                       evaluation=True)

    if len(batch) > 0:
        print("Start evaluation...")
        preds = []
        for i, b in enumerate(batch):
            preds += trainer.predict(b)
    else:
        # skip eval if dev data does not exist
        preds = []

    # write to file and score
    batch.conll.set(['upos', 'xpos', 'feats'], [y for x in preds for y in x])
    batch.conll.write_conll(system_pred_file)

    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        print("Tagger score:")
        print("{} {:.2f}".format(args['shorthand'], score * 100))
Esempio n. 2
0
def evaluate(args):
    # file paths
    system_pred_file = args['output_file']
    gold_file = args['gold_file']
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand'])

    pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) if args['pretrain_file'] is None \
        else args['pretrain_file']
    pretrain = Pretrain(pretrain_file)

    # load model
    print("Loading model from: {}".format(model_file))
    use_cuda = args['cuda'] and not args['cpu']
    trainer = Trainer(args=args, pretrain=pretrain, model_file=model_file, use_cuda=use_cuda)
    loaded_args, vocab = trainer.args, trainer.vocab

    # load config
    for k in args:
        if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'] or k == 'mode':
            loaded_args[k] = args[k]

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    doc, metasentences = CoNLL.conll2dict(input_file=args['eval_file'])
    doc = Document(doc, metasentences=metasentences)
    batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True)
    if len(batch) > 0:
        print("Start evaluation...")
        preds = []
        for i, b in enumerate(batch):
            preds += trainer.predict(b)
    else:
        # skip eval if dev data does not exist
        preds = []
    preds = utils.unsort(preds, batch.data_orig_idx)

    # write to file and score
    batch.doc.set([UPOS, XPOS, FEATS], [y for x in preds for y in x])
    CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file)

    if gold_file is not None:
        _, _, score = scorer.score(system_pred_file, gold_file)

        print("Tagger score:")
        print("{} {:.2f}".format(args['shorthand'], score*100))
Esempio n. 3
0
    def _set_up_model(self, config, use_gpu):
        # get pretrained word vectors
        self._pretrain = Pretrain(
            config['pretrain_path']) if 'pretrain_path' in config else None

        if 'use_lexicon' in self.config and self.config['use_lexicon']:
            assert 'lemma_model_path' in self.pipeline.config, 'If `pos_use_lexicon` tag is used, you must add lemma processor to processors!'
            assert 'tokenize_library' in self.pipeline.config and self.pipeline.config[
                'tokenize_library'] == 'obeliks', '`pos_use_lexicon` is currently supported only for `standard` and `standard_jos` type'
            arg = {
                'constrain_via_lexicon':
                self.pipeline.config['lemma_model_path']
            }
        else:
            arg = None
        # set up trainer
        self._trainer = Trainer(args=arg,
                                pretrain=self.pretrain,
                                model_file=config['model_path'],
                                use_cuda=use_gpu)
Esempio n. 4
0
def train(args):
    utils.ensure_dir(args['save_dir'])
    model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \
            else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand'])

    # load pretrained vectors
    vec_file = args['wordvec_file']

    pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) if args['pretrain_file'] is None \
        else args['pretrain_file']
    pretrain = Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab'])

    # load data
    print("Loading data with batch size {}...".format(args['batch_size']))
    doc, metasentences = CoNLL.conll2dict(input_file=args['train_file'])
    train_doc = Document(doc, metasentences=metasentences)
    train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False)
    vocab = train_batch.vocab
    doc, metasentences = CoNLL.conll2dict(input_file=args['eval_file'])
    dev_doc = Document(doc, metasentences=metasentences)
    dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True)

    # pred and gold path
    system_pred_file = args['output_file']
    gold_file = args['gold_file']

    # skip training if the language does not have training or dev data
    if len(train_batch) == 0 or len(dev_batch) == 0:
        print("Skip training because no data available...")
        sys.exit(0)

    print("Training tagger...")
    trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda'])

    global_step = 0
    max_steps = args['max_steps']
    dev_score_history = []
    best_dev_preds = []
    current_lr = args['lr']
    global_start_time = time.time()
    format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}'

    if args['adapt_eval_interval']:
        args['eval_interval'] = utils.get_adaptive_eval_interval(dev_batch.num_examples, 2000, args['eval_interval'])
        print("Evaluating the model every {} steps...".format(args['eval_interval']))

    using_amsgrad = False
    last_best_step = 0
    # start training
    train_loss = 0
    while True:
        do_break = False
        for i, batch in enumerate(train_batch):
            start_time = time.time()
            global_step += 1
            loss = trainer.update(batch, eval=False) # update step
            train_loss += loss
            if global_step % args['log_step'] == 0:
                duration = time.time() - start_time
                print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\
                        max_steps, loss, duration, current_lr))

            if global_step % args['eval_interval'] == 0:
                # eval on dev
                print("Evaluating on dev set...")
                dev_preds = []
                for batch in dev_batch:
                    preds = trainer.predict(batch)
                    dev_preds += preds
                dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx)
                dev_batch.doc.set([UPOS, XPOS, FEATS], [y for x in dev_preds for y in x])
                CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file)
                _, _, dev_score = scorer.score(system_pred_file, gold_file)

                train_loss = train_loss / args['eval_interval'] # avg loss per batch
                print("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score))
                train_loss = 0

                # save best model
                if len(dev_score_history) == 0 or dev_score > max(dev_score_history):
                    last_best_step = global_step
                    trainer.save(model_file)
                    print("new best model saved.")
                    best_dev_preds = dev_preds

                dev_score_history += [dev_score]
                print("")

            if global_step - last_best_step >= args['max_steps_before_stop']:
                if not using_amsgrad:
                    print("Switching to AMSGrad")
                    last_best_step = global_step
                    using_amsgrad = True
                    trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6)
                else:
                    do_break = True
                    break

            if global_step >= args['max_steps']:
                do_break = True
                break

        if do_break: break

        train_batch.reshuffle()

    print("Training ended with {} steps.".format(global_step))

    best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1
    print("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval']))
 def _set_up_model(self, config, use_gpu):
     # get pretrained word vectors
     self._pretrain = Pretrain(config['pretrain_path'])
     # set up trainer
     self._trainer = Trainer(pretrain=self.pretrain, model_file=config['model_path'], use_cuda=use_gpu)