def evaluate(args): # file paths system_pred_file = args['output_file'] gold_file = args['gold_file'] model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand']) pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['save_name']) # load pretrain pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] trainer = Trainer(args=args, pretrain=pretrain, model_file=model_file, use_cuda=use_cuda) loaded_args, vocab = trainer.args, trainer.vocab # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand' ] or k == 'mode': loaded_args[k] = args[k] # load data print("Loading data with batch size {}...".format(args['batch_size'])) batch = DataLoader(args['eval_file'], args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True) if len(batch) > 0: print("Start evaluation...") preds = [] for i, b in enumerate(batch): preds += trainer.predict(b) else: # skip eval if dev data does not exist preds = [] # write to file and score batch.conll.set(['upos', 'xpos', 'feats'], [y for x in preds for y in x]) batch.conll.write_conll(system_pred_file) if gold_file is not None: _, _, score = scorer.score(system_pred_file, gold_file) print("Tagger score:") print("{} {:.2f}".format(args['shorthand'], score * 100))
def evaluate(args): # file paths system_pred_file = args['output_file'] gold_file = args['gold_file'] model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand']) pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) if args['pretrain_file'] is None \ else args['pretrain_file'] pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] trainer = Trainer(args=args, pretrain=pretrain, model_file=model_file, use_cuda=use_cuda) loaded_args, vocab = trainer.args, trainer.vocab # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'] or k == 'mode': loaded_args[k] = args[k] # load data print("Loading data with batch size {}...".format(args['batch_size'])) doc, metasentences = CoNLL.conll2dict(input_file=args['eval_file']) doc = Document(doc, metasentences=metasentences) batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) if len(batch) > 0: print("Start evaluation...") preds = [] for i, b in enumerate(batch): preds += trainer.predict(b) else: # skip eval if dev data does not exist preds = [] preds = utils.unsort(preds, batch.data_orig_idx) # write to file and score batch.doc.set([UPOS, XPOS, FEATS], [y for x in preds for y in x]) CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file) if gold_file is not None: _, _, score = scorer.score(system_pred_file, gold_file) print("Tagger score:") print("{} {:.2f}".format(args['shorthand'], score*100))
def _set_up_model(self, config, use_gpu): # get pretrained word vectors self._pretrain = Pretrain( config['pretrain_path']) if 'pretrain_path' in config else None if 'use_lexicon' in self.config and self.config['use_lexicon']: assert 'lemma_model_path' in self.pipeline.config, 'If `pos_use_lexicon` tag is used, you must add lemma processor to processors!' assert 'tokenize_library' in self.pipeline.config and self.pipeline.config[ 'tokenize_library'] == 'obeliks', '`pos_use_lexicon` is currently supported only for `standard` and `standard_jos` type' arg = { 'constrain_via_lexicon': self.pipeline.config['lemma_model_path'] } else: arg = None # set up trainer self._trainer = Trainer(args=arg, pretrain=self.pretrain, model_file=config['model_path'], use_cuda=use_gpu)
def train(args): utils.ensure_dir(args['save_dir']) model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_tagger.pt'.format(args['save_dir'], args['shorthand']) # load pretrained vectors vec_file = args['wordvec_file'] pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) if args['pretrain_file'] is None \ else args['pretrain_file'] pretrain = Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab']) # load data print("Loading data with batch size {}...".format(args['batch_size'])) doc, metasentences = CoNLL.conll2dict(input_file=args['train_file']) train_doc = Document(doc, metasentences=metasentences) train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False) vocab = train_batch.vocab doc, metasentences = CoNLL.conll2dict(input_file=args['eval_file']) dev_doc = Document(doc, metasentences=metasentences) dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) # pred and gold path system_pred_file = args['output_file'] gold_file = args['gold_file'] # skip training if the language does not have training or dev data if len(train_batch) == 0 or len(dev_batch) == 0: print("Skip training because no data available...") sys.exit(0) print("Training tagger...") trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda']) global_step = 0 max_steps = args['max_steps'] dev_score_history = [] best_dev_preds = [] current_lr = args['lr'] global_start_time = time.time() format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}' if args['adapt_eval_interval']: args['eval_interval'] = utils.get_adaptive_eval_interval(dev_batch.num_examples, 2000, args['eval_interval']) print("Evaluating the model every {} steps...".format(args['eval_interval'])) using_amsgrad = False last_best_step = 0 # start training train_loss = 0 while True: do_break = False for i, batch in enumerate(train_batch): start_time = time.time() global_step += 1 loss = trainer.update(batch, eval=False) # update step train_loss += loss if global_step % args['log_step'] == 0: duration = time.time() - start_time print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\ max_steps, loss, duration, current_lr)) if global_step % args['eval_interval'] == 0: # eval on dev print("Evaluating on dev set...") dev_preds = [] for batch in dev_batch: preds = trainer.predict(batch) dev_preds += preds dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx) dev_batch.doc.set([UPOS, XPOS, FEATS], [y for x in dev_preds for y in x]) CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file) _, _, dev_score = scorer.score(system_pred_file, gold_file) train_loss = train_loss / args['eval_interval'] # avg loss per batch print("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score)) train_loss = 0 # save best model if len(dev_score_history) == 0 or dev_score > max(dev_score_history): last_best_step = global_step trainer.save(model_file) print("new best model saved.") best_dev_preds = dev_preds dev_score_history += [dev_score] print("") if global_step - last_best_step >= args['max_steps_before_stop']: if not using_amsgrad: print("Switching to AMSGrad") last_best_step = global_step using_amsgrad = True trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6) else: do_break = True break if global_step >= args['max_steps']: do_break = True break if do_break: break train_batch.reshuffle() print("Training ended with {} steps.".format(global_step)) best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1 print("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval']))
def _set_up_model(self, config, use_gpu): # get pretrained word vectors self._pretrain = Pretrain(config['pretrain_path']) # set up trainer self._trainer = Trainer(pretrain=self.pretrain, model_file=config['model_path'], use_cuda=use_gpu)