Esempio n. 1
0
 def set_graph(self):
     self.graph = {}
     for nname, node in self.nodes.items():
         parent = node.parent
         for par in tolist(parent.keys()):
             if par in self.inputs.keys():
                 continue
             if par in self.graph.keys():
                 self.graph[par] =\
                     tolist(self.graph[par]) + [node.name]
             else:
                 self.graph[par] = node.name
     sorted_nodes = topological_sort(self.graph)
     if len(self.graph) > 0:
         for i in xrange(len(self.nodes)):
             self.sorted_nodes.append(sorted_nodes.popleft())
     for node in self.nodes:
         parent = self.nodes[node].parent
         for par in tolist(parent.keys()):
             try:
                 self.nodes[node].parent[par] = self.inputs_dim[par]
             except:
                 if self.nodes[par].nout is not None:
                     # Assume this is FullyConnectedLayer
                     self.nodes[node].parent[par] = self.nodes[par].nout
                 else:
                     # Assume this is ConvLayer
                     try:
                         self.nodes[node].parent[par] = self.nodes[
                             par].outshape
                     except:
                         # Assume this is MaxPool2D
                         self.nodes[par].initialize()
                         self.nodes[node].parent[par] = self.nodes[
                             par].outshape
         if hasattr(node, 'recurrent'):
             recurrent = self.nodes[node].recurrent
             for rec in tolist(recurrent.keys()):
                 self.nodes[node].recurrent[rec] = self.nodes[rec].nout
Esempio n. 2
0
File: net.py Progetto: Beronx86/cle
 def set_graph(self):
     self.graph = {}
     for nname, node in self.nodes.items():
         parent = node.parent
         for par in tolist(parent.keys()):
             if par in self.inputs.keys():
                 continue
             if par in self.graph.keys():
                 self.graph[par] =\
                     tolist(self.graph[par]) + [node.name]
             else:
                 self.graph[par] = node.name
     sorted_nodes = topological_sort(self.graph)
     if len(self.graph) > 0:
         for i in xrange(len(self.nodes)):
             self.sorted_nodes.append(sorted_nodes.popleft())
     for node in self.nodes:
         parent = self.nodes[node].parent
         for par in tolist(parent.keys()):
             try:
                 self.nodes[node].parent[par] = self.inputs_dim[par]
             except:
                 if self.nodes[par].nout is not None:
                     # Assume this is FullyConnectedLayer
                     self.nodes[node].parent[par] = self.nodes[par].nout
                 else:
                     # Assume this is ConvLayer
                     try:
                         self.nodes[node].parent[par] = self.nodes[par].outshape
                     except:
                         # Assume this is MaxPool2D
                         self.nodes[par].initialize()
                         self.nodes[node].parent[par] = self.nodes[par].outshape
         if hasattr(node, 'recurrent'):
             recurrent = self.nodes[node].recurrent
             for rec in tolist(recurrent.keys()):
                 self.nodes[node].recurrent[rec] = self.nodes[rec].nout
Esempio n. 3
0
 def scan_fn(self, *args):
     next_recurrence = []
     sorted_nodes = topological_sort(self.graph)
     inputs = tolist(args[:self.nseqs])
     recurrence = tolist(args[self.nseqs:self.nseqs+self.nrecur])
     inputs += tolist(args[self.nseqs+self.nrecur:self.nseqs+self.noutputs])
     nonseqs = tolist(args[self.nseqs+self.noutputs:])
     for nname, node in self.nodes.items():
         for i, (aname, arg) in enumerate(self.recur_args.items()):
             if node is arg:
                 node.rec_out = recurrence[i]
     if len(sorted_nodes) != 0:
         for node in self.sorted_nodes:
             inp = []
             parent = self.nodes[node].parent
             for par in parent:
                 tok = 1
                 for inp2 in inputs:
                     if par in inp2.name:
                         inp.append(inp2)
                         tok = 0
                         break
                 if tok:
                     inp.append(self.nodes[par].out)
             if self.nodes[node] in self.recur_args.values():
                 rec_inp = []
                 recurrent = self.nodes[node].recurrent
                 for rec in recurrent:
                     rec_inp.append(self.nodes[rec].rec_out)
                 inp = [inp, rec_inp]
                 self.nodes[node].out = self.nodes[node].fprop(inp)
                 next_recurrence.append(self.nodes[node].out)
             else:
                 self.nodes[node].out = self.nodes[node].fprop(inp)
     else:
         # Assume that you have only single depth (parallel) graph
         # Instead of Queue use for-loop to forcibly run the operation
         for node in self.nodes:
             inp = []
             parent = self.nodes[node].parent
             for par in parent:
                 tok = 1
                 for inp2 in inputs:
                     if par in inp2.name:
                         inp.append(inp2)
                         tok = 0
                         break
                 if tok:
                     inp.append(self.nodes[par].out)
             if self.nodes[node] in self.recur_args.values():
                 rec_inp = []
                 recurrent = self.nodes[node].recurrent
                 for rec in recurrent:
                     rec_inp.append(self.nodes[rec].rec_out)
                 inp = [inp, rec_inp]
                 self.nodes[node].out = self.nodes[node].fprop(inp)
                 next_recurrence.append(self.nodes[node].out)
             else:
                 self.nodes[node].out = self.nodes[node].fprop(inp)
     required_outputs = []
     if self.iterators is not None:
         for arg in self.iterators:
             for node in self.nodes.values():
                 if node is arg:
                     required_outputs.append(node.out)
     if self.output_args is not None:
         for arg in self.output_args:
             for node in self.nodes.values():
                 if node is arg:
                     required_outputs.append(node.out)
     return next_recurrence + required_outputs
Esempio n. 4
0
File: net.py Progetto: Beronx86/cle
 def scan_fn(self, *args):
     next_recurrence = []
     sorted_nodes = topological_sort(self.graph)
     inputs = tolist(args[:self.nseqs])
     recurrence = tolist(args[self.nseqs:self.nseqs+self.nrecur])
     inputs += tolist(args[self.nseqs+self.nrecur:self.nseqs+self.noutputs])
     nonseqs = tolist(args[self.nseqs+self.noutputs:])
     for nname, node in self.nodes.items():
         for i, (aname, arg) in enumerate(self.recur_args.items()):
             if node is arg:
                 node.rec_out = recurrence[i]
     if len(sorted_nodes) != 0:
         for node in self.sorted_nodes:
             inp = []
             parent = self.nodes[node].parent
             for par in parent:
                 tok = 1
                 for inp2 in inputs:
                     if par in inp2.name:
                         inp.append(inp2)
                         tok = 0
                         break
                 if tok:
                     inp.append(self.nodes[par].out)
             if self.nodes[node] in self.recur_args.values():
                 rec_inp = []
                 recurrent = self.nodes[node].recurrent
                 for rec in recurrent:
                     rec_inp.append(self.nodes[rec].rec_out)
                 inp = [inp, rec_inp]
                 self.nodes[node].out = self.nodes[node].fprop(inp)
                 next_recurrence.append(self.nodes[node].out)
             else:
                 self.nodes[node].out = self.nodes[node].fprop(inp)
     else:
         # Assume that you have only single depth (parallel) graph
         # Instead of Queue use for-loop to forcibly run the operation
         for node in self.nodes:
             inp = []
             parent = self.nodes[node].parent
             for par in parent:
                 tok = 1
                 for inp2 in inputs:
                     if par in inp2.name:
                         inp.append(inp2)
                         tok = 0
                         break
                 if tok:
                     inp.append(self.nodes[par].out)
             if self.nodes[node] in self.recur_args.values():
                 rec_inp = []
                 recurrent = self.nodes[node].recurrent
                 for rec in recurrent:
                     rec_inp.append(self.nodes[rec].rec_out)
                 inp = [inp, rec_inp]
                 self.nodes[node].out = self.nodes[node].fprop(inp)
                 next_recurrence.append(self.nodes[node].out)
             else:
                 self.nodes[node].out = self.nodes[node].fprop(inp)
     required_outputs = []
     if self.iterators is not None:
         for arg in self.iterators:
             for node in self.nodes.values():
                 if node is arg:
                     required_outputs.append(node.out)
     if self.output_args is not None:
         for arg in self.output_args:
             for node in self.nodes.values():
                 if node is arg:
                     required_outputs.append(node.out)
     return next_recurrence + required_outputs