def GET(self): if librarian.is_traktor_running(): response = {"status": "error", "message": "Please quit Traktor first."} else: cleaner = Cleaner(Library.instance()) cleaner.remove_duplicates() logger.debug(u"Duplicate removal complete") response = cleaner.get_result() response["status"] = "ok" web.header("Cache-Control", "no-cache") return json.dumps(response)
def main(): try: lib = Library(conf.library_dir) if conf.action == "clean": cleaner = Cleaner(lib) print("Removing duplicates..."), cleaner.remove_duplicates() print("DONE") cleaner.report() if not conf.test: lib.flush() print("\nTraktor library updated.") else: print("\nTest run. No changes made to the library.") elif conf.action == "export": exporter = Exporter(lib, conf.export_dir) exporter.export() except Exception as e: logger.error(e, exc_info=False)
import os congress_id = "" if len(sys.argv) > 3 or len(sys.argv) < 2: print("Please Enter valid parameter:") print("Parameter: Congress term number") print("Option: --skip, avoid data cleaning") sys.exit() if len(sys.argv) == 2: congress_id = str(sys.argv[1]) if os.path.isfile("rawData/" + "speeches_" + congress_id + ".txt") and os.path.isfile("rawData/" + congress_id + "_SpeakerMap.txt"): print("cleaning ....") data_cleaner = Cleaner([congress_id]) data_cleaner.clean_pipeline() print("classifying ....") congress_classifier = Classifier([congress_id]) congress_classifier.base_pipeline() print("done.") sys.exit() else: print( "There are no speeches and speakerMap text file to process for congress " + congress_id) print( "Please put the target congress raw text data into rawData directory" ) sys.exit()
[plot.fitted_histogram, y['LogSalePrice']], # [plot.qq, y['SalePrice']], # [plot.qq, y['Log1SalePrice']], ] #plot.view(plots) #y.to_csv('y.csv', index=False) y_np = y.drop('SalePrice', axis=1).to_numpy() train_id = x_train['Id'] test_id = x_test['Id'] x_train.drop('Id', axis=1, inplace=True) x_test.drop('Id', axis=1, inplace=True) cleaner = Cleaner(x_train, x_test) cleaner.clean(variables) #linear = regression.build('Linear') #linear_cv = regression.cross_validate(linear, cleaner.x_train_np, y_np) #print('LINEAR', linear_cv) lasso = regression.build('Lasso', alpha=0.002) lasso_cv = regression.cross_validate(lasso, cleaner.x_train_np, y_np) elastic_net = regression.build('ElasticNet', alpha=0.002) elastic_net_cv = regression.cross_validate(elastic_net, cleaner.x_train_np, y_np) kernel_ridge = regression.build('KernelRidge') kernel_ridge_cv = regression.cross_validate(kernel_ridge, cleaner.x_train_np,