def transform_to_categorized_data_one_user(user_id): out_path_prefix = "/speech/dbwork/mul/students/dehajjik/categorized_data/" data_key = "data" metadata_key = "metadata" print "loading data for user "+str(user_id) nontransformed_data = DataExtractor.load_json_data(user_id) #nontransformed_data = JsonUtils.load_json_data("/home/dehajjik/workspace/resources/sample_data_for_location_categorization_test.json") #the transfomers responsible for the features of the data categorization feature_transformers = {LocationTransformer.transformed_feature_name: LocationTransformer(nontransformed_data), NotificationTransformer.transformed_feature_name : NotificationTransformer(nontransformed_data), ApplaunchTransformer.transformed_feature_name : ApplaunchTransformer(nontransformed_data), BatteryTransformer.transformed_feature_name: BatteryTransformer(nontransformed_data), HeadsetTransformer.transformed_feature_name: HeadsetTransformer(nontransformed_data), BluetoothPairedTransformer.transformed_feature_name: BluetoothPairedTransformer(nontransformed_data), BluetoothSeenTransformer.transformed_feature_name: BluetoothSeenTransformer(nontransformed_data), ActivityTransformer.transformed_feature_name : ActivityTransformer(nontransformed_data)} #the features that we want to transform selected_features = [LocationTransformer.transformed_feature_name, NotificationTransformer.transformed_feature_name, ApplaunchTransformer.transformed_feature_name, #BatteryTransformer.transformed_feature_name, #HeadsetTransformer.transformed_feature_name, BluetoothPairedTransformer.transformed_feature_name, #BluetoothSeenTransformer.transformed_feature_name, ActivityTransformer.transformed_feature_name] #selected_features = [ActivityTransformer.transformed_feature_name] categorized_data = {} categorized_data[data_key]={} categorized_data[metadata_key]={} for feature in selected_features: feature_transformers[feature].transform() if feature_transformers[feature].transformed_feature_data != {None:None} and feature_transformers[feature].transformed_feature_metadata != {None:None}: categorized_data[data_key][feature]= feature_transformers[feature].transformed_feature_data categorized_data[metadata_key][feature] = feature_transformers[feature].transformed_feature_metadata JsonUtils.save_json_data(out_path_prefix+str(DataExtractor.user_long_ids[user_id])+"/all/all_in_one_validated_log", categorized_data) return categorized_data
def nb_realizations_by_feature_one_user(user_id): data = DataExtractor.load_json_data(user_id) observation_period = [300.0, 231.0, 89.0, 249.0, 229.0,224.0] realizations_by_feature = {} realization_per_day_by_feature = {} for feature in data: realizations_by_feature[feature]=len(data[feature]) realization_per_day_by_feature[feature]= len(data[feature])/observation_period[user_id-1] str_res = ('user '+str(user_id)+'('+str(DataExtractor.user_long_ids[user_id])+': \nnumber of realizations by feature:\n'+pformat(realizations_by_feature)+'\n average number of realizations per day per feature:\n'+pformat(realization_per_day_by_feature)+'\n\n') return str_res
def nb_realizations_by_feature_one_user(user_id): data = DataExtractor.load_json_data(user_id) observation_period = [300.0, 231.0, 89.0, 249.0, 229.0, 224.0] realizations_by_feature = {} realization_per_day_by_feature = {} for feature in data: realizations_by_feature[feature] = len(data[feature]) realization_per_day_by_feature[feature] = len( data[feature]) / observation_period[user_id - 1] str_res = ('user ' + str(user_id) + '(' + str(DataExtractor.user_long_ids[user_id]) + ': \nnumber of realizations by feature:\n' + pformat(realizations_by_feature) + '\n average number of realizations per day per feature:\n' + pformat(realization_per_day_by_feature) + '\n\n') return str_res
#!/usr/bin/env python import sys sys.path.insert(0, "/home/dehajjik/workspace/src/utils") from transform_to_categorized_data_one_user import transform_to_categorized_data_one_user as ttcdou from clean_data_utils import DataExtractor ''' make the categorized data transformation for all the users ''' for user_id in DataExtractor.users_ids_list(): ttcdou(user_id) print("user "+str(user_id)+" extracted")
#!/usr/bin/env python import sys sys.path.insert(0, "/home/dehajjik/workspace/src/utils") from transform_to_categorized_data_one_user import transform_to_categorized_data_one_user as ttcdou from clean_data_utils import DataExtractor ''' make the categorized data transformation for all the users ''' for user_id in DataExtractor.users_ids_list(): ttcdou(user_id) print("user " + str(user_id) + " extracted")