def run_extra_tree(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Extremely Random Forest Regression')) if not self.batch: results = CLFManager.factory(self.patientId, model="et").predict() return results else: clf = CLFManager.factory(self.patientId, model="et") return clf.batch_predict(), clf._allFeatureDesp
def run_incremental_random_forest(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Random Forest Regression')) results = CLFManager.factory(self.patientId, model="incremental").predict() return results
def run_global(self): ''' Run global model :return: ''' self.log.info( "Running global classification using algorithm '{}'".format( self.patientId, 'Naive Bayes')) return CLFManager.factory(model="global").predict()
def run_nb(self): ''' Run Naive Bayes :return: ''' self.log.info( "Running classification for patient {} using algorithm '{}'". format(self.patientId, 'Naive Bayes')) return CLFManager.factory(self.patientId, model="nb").predict()
def run_svm(self): ''' Run SVM :return: ''' self.log.info( "Running classification for patient {} using algorithm '{}'". format(self.patientId, 'SVM')) return CLFManager.factory(self.patientId, model="svm").predict()
def run_dummy(self): ''' Run Dummy classifier :return: ''' self.log.info( "Running classification for patient {} using algorithm '{}'". format(self.patientId, 'Dummy')) return CLFManager.factory(self.patientId, model="dummy").predict()
def run_extra_tree_classifier(self): ''' Run Extr TRee Classifier :return: ''' self.log.info( "Running classification for patient {} using algorithm '{}'". format(self.patientId, 'Extremely Random Forest')) return CLFManager.factory(self.patientId, model="etc").predict()
def run_random_forest_classifier(self): ''' Run Random Forest Classifier :return: ''' self.log.info( "Running classification for patient {} using algorithm '{}'". format(self.patientId, 'Random Forest')) return CLFManager.factory(self.patientId, model="rfc").predict()
def run_fixed_model(self): """ Runs RNN prediction. :return: """ self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'FixedModel')) fixed_model = CLFManager.factory(self.patientId, model="fm") return fixed_model.predict()
def run_rnn(self): """ Runs RNN prediction. :return: """ self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Recurrent Neural Networks')) rnn = CLFManager.factory(self.patientId, model="rnn") return rnn.predict()
def run_lstm(self): """ Runs LSTM prediction. :return: """ self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'LSTM-Recurrent Neural Networks')) lstm = CLFManager.factory(self.patientId, model="lstm") return lstm.predict()
def run_arima(self): """ Runs ARIMA prediction. :return: """ self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'ARIMA')) arima = CLFManager.factory(self.patientId, model="arima") return arima.predict()
def run_avg(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Avg training value')) return CLFManager.factory(self.patientId, model="avg").predict()
def run_linear_regression(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Linear Regression')) return CLFManager.factory(self.patientId, model="lr").predict()
def run_context_avg(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Weigted AVG in similar context')) return CLFManager.factory(self.patientId, model="contextavg").predict()
def run_last_value(self): self.log.info( "Running prediction for patient {} using algorithm '{}'".format( self.patientId, 'Last value')) return CLFManager.factory(self.patientId, model="last").predict()