yy_start = 106 yy_end = 116 idx_band = 1 exp = Exposures() ssp_file = EXP_POP_PTH +'baseYr_total_2000.tif' exp.set_from_raster(ssp_file, transform=DST_META['transform'], height=DST_META['height'], width=DST_META['width'], resampling=Resampling.average) exp.value *= 25 # sum of the grids after upscaling if np.any(exp.value<0) == True: raise ValueError exp.value_unit = 'N people per pixel' exp.ref_year = 2000 exp[INDICATOR_CENTR+HAZ_TYPE] = np.arange(len(exp), dtype=int) exp[INDICATOR_IF+HAZ_TYPE] = np.ones(len(exp), dtype=int) exp.check() for year in YEAR: imp_model = [] # initite a list fro all models in one year imp_save = None for hydro, gcm in [(hydro, gcm) for hydro in HYDRO_MODEL for gcm in GCM_MODEL]: haz_file = HAZARD_PTH +'flddph_' +hydro +'_' +gcm +'_' +RCP +'_flopros_gev_picontrol_2006_2300_0.1.nc' haz_frac = HAZARD_PTH +'fldfrc_' +hydro +'_' +gcm +'_' +RCP +'_flopros_gev_picontrol_2006_2300_0.1.nc' if haz_file not in HAZ_FILES:
for ssp, year in [(ssp, year) for ssp in SSP_MODEL for year in YEAR]: exp = Exposures() ssp_file = EXP_POP_PTH + ssp.upper( ) + '_1km/' + ssp + '_total_' + year + '.tif' exp.set_from_raster(ssp_file, transform=DST_META['transform'], height=DST_META['height'], width=DST_META['width'], resampling=Resampling.average) exp.value *= 25 # sum of the grids after upscaling if np.any(exp.value < 0) == True: raise ValueError exp.value_unit = 'N people per pixel' exp.ref_year = int(year) exp[INDICATOR_CENTR + HAZ_TYPE] = np.arange(len(exp), dtype=int) exp[INDICATOR_IF + HAZ_TYPE] = np.ones(len(exp), dtype=int) exp.check() imp_model = [] # initite a list fro all models in one year imp_save = None for hydro, gcm in [(hydro, gcm) for hydro in HYDRO_MODEL for gcm in GCM_MODEL]: haz_file = HAZARD_PTH + 'flddph_' + hydro + '_' + gcm + '_' + RCP + '_flopros_gev_picontrol_2006_2300_0.1.nc' haz_frac = HAZARD_PTH + 'fldfrc_' + hydro + '_' + gcm + '_' + RCP + '_flopros_gev_picontrol_2006_2300_0.1.nc' if haz_file not in HAZ_FILES: logging.error('no file: flddph_' + hydro + '_' + gcm + '_' + RCP +