class Solver: def __init__(self): self.k = 0 self.prg = Control() self.prg.load("client.lp") self.prg.ground([("pigeon", []), ("sleep", [Number(self.k)])]) self.prg.assign_external(Function("sleep", [Number(self.k)]), True) self.ret = None self.models = [] def on_model(self, model): self.models.append(str(model)) def start(self, on_finish): if self.ret is not None and not self.ret.unknown(): self.k = self.k + 1 self.prg.ground([("sleep", [self.k])]) self.prg.release_external(Function("sleep", [Number(self.k - 1)])) self.prg.assign_external(Function("sleep", [Number(self.k)]), True) self.future = self.prg.solve(on_model=self.on_model, on_finish=on_finish, async_=True) def stop(self): self.future.cancel() def finish(self): ret = self.future.get() return ret def set_more_pigeon(self, more): self.prg.assign_external(Function("p"), more)
def solve_instance(self): prg = Control() prg.load("puzzle15.lp") prg.load(self.new_filename) ret, parts, step = SolveResult.unsatisfiable, [], 1 parts.append(("base", [])) while ret == SolveResult.unsatisfiable: parts.append(("step", [step])) parts.append(("check", [step])) prg.ground(parts) prg.release_external(Function("query", [step - 1])) prg.assign_external(Function("query", [step]), True) #f = lambda m: stdout.write(str(m)+'\n') print("step:" + str(step) + " Solving...") ret, parts, step = prg.solve(on_model=self.on_model), [], step + 1 if ret.__repr__() == 'UNSAT': ret = SolveResult.unsatisfiable else: ret = SolveResult.satisfiable
class SolveThread(Thread): STATE_SOLVE = 1 STATE_IDLE = 2 STATE_EXIT = 3 def __init__(self, connection): Thread.__init__(self) self.k = 0 self.prg = Control() self.prg.load("client.lp") self.prg.ground([("pigeon", []), ("sleep", [Number(self.k)])]) self.prg.assign_external(Function("sleep", [Number(self.k)]), True) self.state = SolveThread.STATE_IDLE self.input = Connection() self.output = connection def on_model(self, model): self.output.send("answer: " + str(model)), def on_finish(self, ret): self.output.send("finish: " + str(ret) + (" (INTERRUPTED)" if ret.interrupted else "")) def handle_message(self, msg): if msg == "interrupt": self.state = SolveThread.STATE_IDLE elif msg == "exit": self.state = SolveThread.STATE_EXIT elif msg == "less_pigeon_please": self.prg.assign_external(Function("p"), False) self.state = SolveThread.STATE_IDLE elif msg == "more_pigeon_please": self.prg.assign_external(Function("p"), True) self.state = SolveThread.STATE_IDLE elif msg == "solve": self.state = SolveThread.STATE_SOLVE else: raise (RuntimeError("unexpected message: " + msg)) def run(self): while True: if self.state == SolveThread.STATE_SOLVE: f = self.prg.solve(on_model=self.on_model, on_finish=self.on_finish, async_=True) msg = self.input.receive() if self.state == SolveThread.STATE_SOLVE: f.cancel() ret = f.get() else: ret = None self.handle_message(msg) if self.state == SolveThread.STATE_EXIT: return elif ret is not None and not ret.unknown: self.k = self.k + 1 self.prg.ground([("sleep", [Number(self.k)])]) self.prg.release_external( Function("sleep", [Number(self.k - 1)])) self.prg.assign_external(Function("sleep", [Number(self.k)]), True)
class VizloControl(Control): def add_to_painter(self, model: Union[Model, PythonModel, Collection[clingo.Symbol]]): """ will register model with the internal painter. On all consecutive calls to paint(), this model will be painted. :param model: the model to add to the painter. :return: """ self.painter.append(PythonModel(model)) def __init__(self, arguments: List[str] = [], logger=None, message_limit: int = 20, print_entire_models=False, atom_draw_maximum=15): self.control = Control(arguments, logger, message_limit) self.painter: List[PythonModel] = list() self.program: ASTProgram = list() self.raw_program: str = "" self.transformer = JustTheRulesTransformer() self._print_changes_only = not print_entire_models self._atom_draw_maximum = atom_draw_maximum def _set_print_only_changes(self, value: bool) -> None: self._print_changes_only = value def ground(self, parts: List[Tuple[str, List[Symbol]]], context: Any = None) -> None: self.control.ground(parts, context) def solve(self, assumptions: List[Union[Tuple[Symbol, bool], int]] = [], on_model=None, on_statistics=None, on_finish=None, yield_: bool = False, async_: bool = False) -> Union[SolveHandle, SolveResult]: return self.control.solve(assumptions, on_model, on_statistics, on_finish, yield_, async_) def load(self, path): prg = "" with open(path) as f: for line in f: prg += line self.program += prg self.control.load(path) def add(self, name: str, parameters: List[str], program: str) -> None: self.raw_program += program self.control.add(name, parameters, program) def find_nodes_corresponding_to_stable_models(self, g, stable_models): correspoding_nodes = set() for model in stable_models: for node in g.nodes(): log(f"{node} {type(node.model)} == {model} {type(model)} -> {set(node.model) == model}" ) if set(node.model) == model and len( g.edges(node)) == 0: # This is a leaf log(f"{node} <-> {model}") correspoding_nodes.add(node) break return correspoding_nodes def prune_graph_leading_to_models(self, graph: nx.DiGraph, models_as_nodes): before = len(graph) relevant_nodes = set() for model in models_as_nodes: for relevant_node in nx.all_simple_paths(graph, INITIAL_EMPTY_SET, model): relevant_nodes.update(relevant_node) all_nodes = set(graph.nodes()) irrelevant_nodes = all_nodes - relevant_nodes graph.remove_nodes_from(irrelevant_nodes) after = len(graph) log(f"Removed {before - after} of {before} nodes ({(before - after) / before})" ) def _make_graph(self, _sort=True): """ Ties together transformation and solving. Transforms the already added program parts and creates a solving tree. :param _sort: Whether the program should be sorted automatically. Setting this to false will likely result into wrong results! :return: :raises ValueError: """ if not len(self.raw_program): raise ValueError("Can't paint an empty program.") else: t = JustTheRulesTransformer() program = t.transform(self.raw_program, _sort) if len(self.painter): universe = get_ground_universe(program) global_assumptions = make_global_assumptions( universe, self.painter) solve_runner = SolveRunner(program, t.rule2signatures) g = solve_runner.make_graph(global_assumptions) else: solve_runner = SolveRunner(program, symbols_in_heads_map=t.rule2signatures) g = solve_runner.make_graph() return g def paint(self, atom_draw_maximum: int = 20, show_entire_model: bool = False, sort_program: bool = True, **kwargs): """ Will create a graph visualization of the solving process. If models have been added using add_to_painter, only the solving paths that lead to these models will be drawn. :param atom_draw_maximum: int The maximum amount of atoms that will be printed for each partial model. (default=20) :param show_entire_model: bool If false, only the atoms that have been added at a solving step will be printed (up to atom_draw_maximum). If true, all atoms will always be printed (up to atom_draw_maximum). (default=False) :param sort_program: If true, the rules of a program will be sorted and grouped by their dependencies. Each set of rules will contain all rules in which each atom in its heads is contained in a head. :param kwargs: kwargs will be forwarded to the visualisation module. See graph.draw() :return: """ if type(atom_draw_maximum) != int: raise ValueError( f"Argument atom_draw_maximum should be an integer (received {atom_draw_maximum})." ) g = self._make_graph(sort_program) display = NetworkxDisplay(g, atom_draw_maximum, not show_entire_model) img = display.draw(**kwargs) return img def _add_and_ground(self, prg): """Short cut for complex add and ground calls, should only be used for debugging purposes.""" self.add("base", [], prg) self.ground([("base", [])]) ################## # Just pass-through stuff ################## @property def configuration(self) -> Configuration: return self.control.configuration @property def is_conflicting(self) -> bool: return self.control.is_conflicting @property def statistics(self) -> dict: return self.control.statistics @property def symbolic_atoms(self) -> SymbolicAtoms: return self.control.symbolic_atoms @property def theory_atoms(self) -> TheoryAtomIter: return self.control.theory_atoms @property def use_enumeration_assumption(self) -> bool: return self.control.use_enumeration_assumption def assign_external(self, external: Union[Symbol, int], truth: Optional[bool], **kwargs) -> None: self.control.assign_external(external, truth, **kwargs) def backend(self) -> Backend: return self.control.backend() def builder(self) -> ProgramBuilder: return self.control.builder() def cleanup(self) -> None: self.control.cleanup() def get_const(self, name: str) -> Optional[Symbol]: return self.control.get_const(name) def interrupt(self): self.control.interrupt() def register_observer(self, observer, replace=False): self.register_observer(observer, replace) def release_external(self, symbol: Union[Symbol, int]) -> None: self.control.release_external(symbol)