class TestInheritancePy(unittest.TestCase):
    """ test the Inheritance class
    """
    
    def setUp(self):
        """ define a family and variant, and start the Inheritance class
        """
        
        # generate a test family
        sex = "F"
        mom_aff = "1"
        dad_aff = "1"
        
        self.trio = self.create_family(sex, mom_aff, dad_aff)
        
        # generate list of variants
        self.variants = [self.create_variant(sex)]
        self.variants.append(self.create_variant(sex))
        
        # make sure we've got known genes data
        self.known_gene = {"inh": ["Monoallelic"], "confirmed_status": ["confirmed dd gene"]}
        
        self.inh = Autosomal(self.variants, self.trio, self.known_gene, "1001")
    
    def create_variant(self, chrom="1", position="150", sex='F', cq=None,
            geno=['0/1', '0/0', '0/0']):
        """ creates a TrioGenotypes variant
        """
        
        # generate a test variant
        child = create_snv(sex, geno[0], cq, chrom=chrom, pos=position)
        mom = create_snv("F", geno[1], cq, chrom=chrom, pos=position)
        dad = create_snv("M", geno[2], cq, chrom=chrom, pos=position)
        
        return TrioGenotypes(chrom, position, child, mom, dad)
    
    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """
        
        fam = Family('test')
        fam.add_child('child', 'mother', 'father', child_gender, '2', 'child_vcf')
        fam.add_mother('mother', '0', '0', 'female', mom_aff, 'mother_vcf')
        fam.add_father('father', '0', '0', 'male', dad_aff, 'father_vcf')
        fam.set_child()
        
        return fam
    
    def test_check_inheritance_mode_matches_gene_mode(self):
        """ test that check_inheritance_mode_matches_gene_mode() works correctly
        """
        
        # check that the default inheritance types have been set up correctly
        self.assertEqual(self.inh.inheritance_modes, {"Monoallelic",
            "Biallelic", "Both", 'Imprinted', 'Mosaic'})
        
        # make sure that the default var and gene inheritance work
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())
        
        # check that no gene inheritance overlap fails
        self.inh.gene_inheritance = {"Mosaic"}
        self.inh.inheritance_modes = {"Monoallelic", "Biallelic", "Both", 'Imprinted'}
        self.assertFalse(self.inh.check_inheritance_mode_matches_gene_mode())
        
        # check that a single inheritance type still works
        self.inh.gene_inheritance = {"Monoallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())
        
        # check that multiple inheritance types for a gene still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())
        
        # check that extra inheritance modes are included still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic", "Mosaic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())
    
    def test_set_trio_genotypes(self):
        """ test that set_trio_genotypes() works correctly
        """
        
        # set the genotypes using the default variant
        var = self.variants[0]
        self.inh.set_trio_genotypes(var)
        
        # the genotypes for the inh object should match the vars genotypes
        self.assertEqual(self.inh.child, var.child)
        self.assertEqual(self.inh.mom, var.mother)
        self.assertEqual(self.inh.dad, var.father)
        
        # now remove the parents before re-setting the genotypes
        del var.mother
        del var.father
        self.inh.trio.father = None
        self.inh.trio.mother = None
        self.inh.set_trio_genotypes(var)
        
        # the child should match the vars genotypes, but the parent's
        # genotypes should be None
        self.assertEqual(self.inh.child, var.child)
        self.assertIsNone(self.inh.mom)
        self.assertIsNone(self.inh.dad)
    
    def test_get_candidate_variants_monoallelic(self):
        """ test that get_candidate_variants() works for a monoallelic variant
        """
        
        inh = {"inh": ["Monoallelic"], "confirmed_status": ["confirmed dd gene"]}
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/0', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        
        self.assertEqual(self.inh.get_candidate_variants(),
            [(var, ['single_variant'], ['Monoallelic'], ['TEST'])])
        
        # check a variant that shouldn't pass the monoallelic route
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
    
    
    def test_get_candidate_variants_imprinted(self):
        """ test that get_candidate_variants() works for imprinted variants
        """
        
        # check a variant where the imprinting route should work
        inh = {"inh": ["Imprinted"], "confirmed_status": ["confirmed dd gene"]}
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        
        self.assertEqual(self.inh.get_candidate_variants(),
            [(var, ['single_variant'], ['Imprinted'], ['TEST'])])
        
        # de novos should now pass the imprinted route
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/0', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        #self.assertEqual(self.inh.get_candidate_variants(), [])
        self.assertEqual(self.inh.get_candidate_variants(),
            [(var, ['single_variant'], ['Imprinted'], ['TEST'])])
        
        # check a variant that shouldn't pass the imprinted route due to there
        # not being a known gene.
        # NOTE: this behavior differs differs slightly from other inheritance
        # modes when there isn't any known gene. Since there are so few known
        # imprinting genes, it makes sense to only allow for these when we know
        # the mode is correct
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, None, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
        
        # also check imprinting requires loss-of-function consequences
        var = self.create_variant(position='150', cq='missense_variant',
            geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
        
        # check loss-of-function requirement for a paternally inherited variant
        var = self.create_variant(position='150', cq='missense_variant',
            geno=['0/1', '0/0', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
        
        # check imprinting for a biallelic variant
        var = self.create_variant(position='150', cq='stop_gained',
            geno=['1/1', '0/1', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(),
            [(var, ['single_variant'], ['Imprinted'], ['TEST'])])
        
        # check imprinting for a biallelic variant
        var = self.create_variant(position='150', cq='missense_variant',
            geno=['1/1', '0/1', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
    
    def test_get_candidate_variants_compound_het(self):
        """ test that get_candidate_variants() works for biallelic variants
        """
        
        inh = {"inh": ["Biallelic"], "confirmed_status": ["confirmed dd gene"]}
        var1 = self.create_variant(position='150', cq='stop_gained',
            geno=['0/1', '0/1', '0/0'])
        var2 = self.create_variant(position='151', cq='stop_gained',
            geno=['0/1', '0/0', '1/0'])
        self.inh = Autosomal([var1, var2], self.trio, inh, "TEST")
        
        self.assertEqual(sorted(self.inh.get_candidate_variants()),
            sorted([(var1, ['compound_het'], ['Biallelic'], ['TEST']),
            (var2, ['compound_het'], ['Biallelic'], ['TEST'])]))
        
        # check that a single variant isn't included in the compound hets
        self.inh = Autosomal([var1], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])
    
    def test_check_if_any_variant_is_cnv(self):
        """ test if check_if_any_variant_is_cnv() works correctly
        """
        
        # generate a test variant
        chrom = "1"
        position = "60000"
        child = create_cnv("F", "unknown", chrom=chrom, pos=position)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)
        
        cnv_var = TrioGenotypes(chrom, position, child, mom, dad)
        
        # check that all variants=SNV returns False
        self.assertFalse(self.inh.check_if_any_variant_is_cnv())
        
        # add a CNV to the variants, then check that we find a CNV
        self.inh.variants.append(cnv_var)
        self.assertTrue(self.inh.check_if_any_variant_is_cnv())
    
    def set_compound_het_var(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """
        
        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}
        
        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]
        
        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad
        
        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()
        
        # set the trio genotypes for the inheritance object
        return var
    
    def test_check_compound_hets(self):
        """ test that check_compound_hets() works correctly for autosomal vars
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        var3 = self.create_variant(chrom="1", position="170", sex="F", cq="stop_gained")
        
        # set the inheritance type, the compound het type ("compound_het"
        # for autosomal variants, and start autosomal inheritance)
        # known_genes = "Biallelic"
        known_gene = {"inh": ["Biallelic"], "confirmed_status": ["confirmed dd gene"]}
        self.inh = Autosomal([var1, var2, var3], self.trio, known_gene, "TEST")
        
        variants = [(), ()]
        
        # check the expected "110, 101" combo passes
        variants[0] = (self.set_compound_het_var(var1, "110"),)
        variants[1] = (self.set_compound_het_var(var2, "101"),)
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)), sorted(variants))
        
        # check that > 2 valid compound hets passes all variants
        variants = [(), (), ()]
        variants[0] = (self.set_compound_het_var(var1, "110"),)
        variants[1] = (self.set_compound_het_var(var2, "101"),)
        variants[2] = (self.set_compound_het_var(var3, "110"),)
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)), sorted(variants))
        
        # check that a single var fails to give compound hets
        single_var = variants[:1]
        self.assertEqual(self.inh.check_compound_hets(single_var), [])
        
        # check that zero length list gives no compound hets
        no_vars = []
        self.assertEqual(self.inh.check_compound_hets(no_vars), [])
    
    def test_is_compound_pair_identical_variants(self):
        """ check that is_compound_pair() excludes compound pairs where the
        members are identical
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        
        # don't include pairs where the first and the second variant are identical
        self.assertFalse(self.inh.is_compound_pair(var1, var1))
        
        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
    
    def test_is_compound_pair_both_missense_with_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="missense_variant")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="missense_variant")
        var3 = self.create_variant(chrom="1", position="160", sex="F", cq="inframe_deletion")
        var4 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")
        
        # dont exclude pairs where both members are not loss-of-function if the
        # proband has parents
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        self.assertTrue(self.inh.is_compound_pair(var1, var3))
        
        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var4))
    
    def test_is_compound_pair_both_missense_without_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="missense_variant")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="missense_variant")
        var3 = self.create_variant(chrom="1", position="160", sex="F", cq="inframe_deletion")
        var4 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")
        
        # drop the parents
        self.inh.trio.father = None
        self.inh.trio.mother = None
        
        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        self.assertFalse(self.inh.is_compound_pair(var1, var3))
        
        # make sure it works if one variant is loss-of-function
        self.assertTrue(self.inh.is_compound_pair(var1, var4))
    
    def test_is_compound_pair_unknown_gene(self):
        """check that is_compound_pair() excludes pairs for unknown genes
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        
        var1.child.info = Info('CQ=missense_variant')
        var2.child.info = Info('CQ=missense_variant')
        var1.child.info.set_genes_and_consequence('1', 100, ('G', ), [])
        var2.child.info.set_genes_and_consequence('1', 100, ('G', ), [])
        
        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
    
    def test_is_compound_pair_cnv_paternal(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """
        
        # generate a test variant
        chrom = "1"
        position = "60000"
        extra = [('CIFER_INHERITANCE', 'paternal')]
        child = create_cnv("F", "paternal", chrom=chrom, pos=position, format=extra)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)
        
        cnv = TrioGenotypes(chrom, position, child, mom, dad)
        
        # set some variants, so we can alter them later
        snv = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        snv = self.set_compound_het_var(snv, "110")
        
        # check that these variants are compound hets, no matter which order
        # they are given as.
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))
        self.assertTrue(self.inh.is_compound_pair(snv, cnv))
        
        # check that if the SNV is inherited from the same parent as the CNV,
        # then the pair isn't a compound het.
        snv = self.set_compound_het_var(snv, "101")
        self.assertFalse(self.inh.is_compound_pair(cnv, snv))
    
    def test_is_compound_pair_cnv_maternal(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """
        
        # generate a test variant
        chrom = "1"
        position = "60000"
        extra = [('CIFER_INHERITANCE', 'maternal')]
        child = create_cnv("F", "maternal", chrom=chrom, pos=position, format=extra)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)
        
        cnv = TrioGenotypes(chrom, position, child, mom, dad)
        
        # set some variants, so we can alter them later
        snv = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        snv = self.set_compound_het_var(snv, "101")
        
        # check that these variants are compound hets, no matter which order
        # they are given as.
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))
        
        # check that if the SNV is inherited from the same parent as the CNV,
        # then the pair isn't a compound het.
        snv = self.set_compound_het_var(snv, "110")
        self.assertFalse(self.inh.is_compound_pair(cnv, snv))
    
    def test_is_compound_pair_proband_only(self):
        """ check that is_compound_pair() includes proband-only pairs
        """
        
        fam = Family("test")
        fam.add_child("child", 'dad_id', 'mom_id', 'F', '2',  "child_vcf")
        fam.set_child()
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="F", cq="stop_gained")
        var2 = self.create_variant(chrom="1", position="160", sex="F", cq="stop_gained")
        
        inh = Autosomal([var1, var2], fam, self.known_gene, "TEST")
        
        # check that a proband-only passes, regardless of the parental genotypes
        self.assertTrue(inh.is_compound_pair(var1, var2))
    
    def test_is_compound_pair_allosomal(self):
        """ check that is_compound_pair() works when the father is affected
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="X", position="150", sex="F", cq="stop_gained")
        var2 = self.create_variant(chrom="X", position="160", sex="F", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "210")
        var2 = self.set_compound_het_var(var2, "202")
        
        # check when the father is unaffected
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        
        # now check when the father is affected
        self.inh.father_affected = True
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        del var2.father.format['PP_DNM']
        # make sure we can't set the father as het on the X chrom
        with self.assertRaises(ValueError):
            self.set_compound_het_var(var2, "201")
    
    def test_is_compound_pair_genotype_combinations(self):
        """ check the various genotype combinations for a compound het
        """
        
        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1", position="150", sex="M", cq="stop_gained")
        var2 = self.create_variant(chrom="1", position="160", sex="M", cq="stop_gained")
        
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        
        # check that the expected scenario passes
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        
        # check that compound hets with de novos fail
        var1 = self.set_compound_het_var(var1, "100")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        
        # check that compound hets have to be transmitted from both parents
        var1 = self.set_compound_het_var(var1, "101")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        
        # check that compound hets have to be transmitted from both parents
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "110")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        
        # make sure that only compound hets in trans pass. We exclude
        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        
        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "111")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
Esempio n. 2
0
class TestInheritancePy(unittest.TestCase):
    """ test the Inheritance class
    """
    def setUp(self):
        """ define a family and variant, and start the Inheritance class
        """

        # generate a test family
        sex = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(sex, mom_aff, dad_aff)

        # generate list of variants
        self.variants = [self.create_variant(sex)]
        self.variants.append(self.create_variant(sex))

        # make sure we've got known genes data
        self.known_gene = {
            "inh": ["Monoallelic"],
            "confirmed_status": ["confirmed dd gene"]
        }

        self.inh = Autosomal(self.variants, self.trio, self.known_gene, "1001")

    def create_variant(self,
                       chrom="1",
                       position="150",
                       sex='F',
                       cq=None,
                       geno=['0/1', '0/0', '0/0']):
        """ creates a TrioGenotypes variant
        """

        # generate a test variant
        child = create_snv(sex, geno[0], cq, chrom=chrom, pos=position)
        mom = create_snv("F", geno[1], cq, chrom=chrom, pos=position)
        dad = create_snv("M", geno[2], cq, chrom=chrom, pos=position)

        return TrioGenotypes(chrom, position, child, mom, dad)

    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """

        fam = Family('test')
        fam.add_child('child', 'mother', 'father', child_gender, '2',
                      'child_vcf')
        fam.add_mother('mother', '0', '0', 'female', mom_aff, 'mother_vcf')
        fam.add_father('father', '0', '0', 'male', dad_aff, 'father_vcf')
        fam.set_child()

        return fam

    def test_check_inheritance_mode_matches_gene_mode(self):
        """ test that check_inheritance_mode_matches_gene_mode() works correctly
        """

        # check that the default inheritance types have been set up correctly
        self.assertEqual(
            self.inh.inheritance_modes,
            {"Monoallelic", "Biallelic", "Both", 'Imprinted', 'Mosaic'})

        # make sure that the default var and gene inheritance work
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that no gene inheritance overlap fails
        self.inh.gene_inheritance = {"Mosaic"}
        self.inh.inheritance_modes = {
            "Monoallelic", "Biallelic", "Both", 'Imprinted'
        }
        self.assertFalse(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that a single inheritance type still works
        self.inh.gene_inheritance = {"Monoallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that multiple inheritance types for a gene still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that extra inheritance modes are included still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic", "Mosaic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

    def test_set_trio_genotypes(self):
        """ test that set_trio_genotypes() works correctly
        """

        # set the genotypes using the default variant
        var = self.variants[0]
        self.inh.set_trio_genotypes(var)

        # the genotypes for the inh object should match the vars genotypes
        self.assertEqual(self.inh.child, var.child)
        self.assertEqual(self.inh.mom, var.mother)
        self.assertEqual(self.inh.dad, var.father)

        # now remove the parents before re-setting the genotypes
        del var.mother
        del var.father
        self.inh.trio.father = None
        self.inh.trio.mother = None
        self.inh.set_trio_genotypes(var)

        # the child should match the vars genotypes, but the parent's
        # genotypes should be None
        self.assertEqual(self.inh.child, var.child)
        self.assertIsNone(self.inh.mom)
        self.assertIsNone(self.inh.dad)

    def test_get_candidate_variants_monoallelic(self):
        """ test that get_candidate_variants() works for a monoallelic variant
        """

        inh = {
            "inh": ["Monoallelic"],
            "confirmed_status": ["confirmed dd gene"]
        }
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['0/1', '0/0', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")

        self.assertEqual(
            self.inh.get_candidate_variants(),
            [(var, ['single_variant'], ['Monoallelic'], ['TEST'])])

        # check a variant that shouldn't pass the monoallelic route
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

    def test_get_candidate_variants_imprinted(self):
        """ test that get_candidate_variants() works for imprinted variants
        """

        # check a variant where the imprinting route should work
        inh = {"inh": ["Imprinted"], "confirmed_status": ["confirmed dd gene"]}
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")

        self.assertEqual(self.inh.get_candidate_variants(),
                         [(var, ['single_variant'], ['Imprinted'], ['TEST'])])

        # de novos should now pass the imprinted route
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['0/1', '0/0', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        #self.assertEqual(self.inh.get_candidate_variants(), [])
        self.assertEqual(self.inh.get_candidate_variants(),
                         [(var, ['single_variant'], ['Imprinted'], ['TEST'])])

        # check a variant that shouldn't pass the imprinted route due to there
        # not being a known gene.
        # NOTE: this behavior differs differs slightly from other inheritance
        # modes when there isn't any known gene. Since there are so few known
        # imprinting genes, it makes sense to only allow for these when we know
        # the mode is correct
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, None, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

        # also check imprinting requires loss-of-function consequences
        var = self.create_variant(position='150',
                                  cq='missense_variant',
                                  geno=['0/1', '0/1', '0/0'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

        # check loss-of-function requirement for a paternally inherited variant
        var = self.create_variant(position='150',
                                  cq='missense_variant',
                                  geno=['0/1', '0/0', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

        # check imprinting for a biallelic variant
        var = self.create_variant(position='150',
                                  cq='stop_gained',
                                  geno=['1/1', '0/1', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(),
                         [(var, ['single_variant'], ['Imprinted'], ['TEST'])])

        # check imprinting for a biallelic variant
        var = self.create_variant(position='150',
                                  cq='missense_variant',
                                  geno=['1/1', '0/1', '0/1'])
        self.inh = Autosomal([var], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

    def test_get_candidate_variants_compound_het(self):
        """ test that get_candidate_variants() works for biallelic variants
        """

        inh = {"inh": ["Biallelic"], "confirmed_status": ["confirmed dd gene"]}
        var1 = self.create_variant(position='150',
                                   cq='stop_gained',
                                   geno=['0/1', '0/1', '0/0'])
        var2 = self.create_variant(position='151',
                                   cq='stop_gained',
                                   geno=['0/1', '0/0', '1/0'])
        self.inh = Autosomal([var1, var2], self.trio, inh, "TEST")

        self.assertEqual(
            sorted(self.inh.get_candidate_variants()),
            sorted([(var1, ['compound_het'], ['Biallelic'], ['TEST']),
                    (var2, ['compound_het'], ['Biallelic'], ['TEST'])]))

        # check that a single variant isn't included in the compound hets
        self.inh = Autosomal([var1], self.trio, inh, "TEST")
        self.assertEqual(self.inh.get_candidate_variants(), [])

    def test_check_if_any_variant_is_cnv(self):
        """ test if check_if_any_variant_is_cnv() works correctly
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        child = create_cnv("F", "unknown", chrom=chrom, pos=position)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)

        cnv_var = TrioGenotypes(chrom, position, child, mom, dad)

        # check that all variants=SNV returns False
        self.assertFalse(self.inh.check_if_any_variant_is_cnv())

        # add a CNV to the variants, then check that we find a CNV
        self.inh.variants.append(cnv_var)
        self.assertTrue(self.inh.check_if_any_variant_is_cnv())

    def set_compound_het_var(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """

        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}

        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]

        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad

        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()

        # set the trio genotypes for the inheritance object
        return var

    def test_check_compound_hets(self):
        """ test that check_compound_hets() works correctly for autosomal vars
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")
        var3 = self.create_variant(chrom="1",
                                   position="170",
                                   sex="F",
                                   cq="stop_gained")

        # set the inheritance type, the compound het type ("compound_het"
        # for autosomal variants, and start autosomal inheritance)
        # known_genes = "Biallelic"
        known_gene = {
            "inh": ["Biallelic"],
            "confirmed_status": ["confirmed dd gene"]
        }
        self.inh = Autosomal([var1, var2, var3], self.trio, known_gene, "TEST")

        variants = [(), ()]

        # check the expected "110, 101" combo passes
        variants[0] = (self.set_compound_het_var(var1, "110"), )
        variants[1] = (self.set_compound_het_var(var2, "101"), )
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                         sorted(variants))

        # check that > 2 valid compound hets passes all variants
        variants = [(), (), ()]
        variants[0] = (self.set_compound_het_var(var1, "110"), )
        variants[1] = (self.set_compound_het_var(var2, "101"), )
        variants[2] = (self.set_compound_het_var(var3, "110"), )
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                         sorted(variants))

        # check that a single var fails to give compound hets
        single_var = variants[:1]
        self.assertEqual(self.inh.check_compound_hets(single_var), [])

        # check that zero length list gives no compound hets
        no_vars = []
        self.assertEqual(self.inh.check_compound_hets(no_vars), [])

    def test_is_compound_pair_identical_variants(self):
        """ check that is_compound_pair() excludes compound pairs where the
        members are identical
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        # don't include pairs where the first and the second variant are identical
        self.assertFalse(self.inh.is_compound_pair(var1, var1))

        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_both_missense_with_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="missense_variant")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="missense_variant")
        var3 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="inframe_deletion")
        var4 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")

        # dont exclude pairs where both members are not loss-of-function if the
        # proband has parents
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        self.assertTrue(self.inh.is_compound_pair(var1, var3))

        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var4))

    def test_is_compound_pair_both_missense_without_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="missense_variant")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="missense_variant")
        var3 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="inframe_deletion")
        var4 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")

        # drop the parents
        self.inh.trio.father = None
        self.inh.trio.mother = None

        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        self.assertFalse(self.inh.is_compound_pair(var1, var3))

        # make sure it works if one variant is loss-of-function
        self.assertTrue(self.inh.is_compound_pair(var1, var4))

    def test_is_compound_pair_unknown_gene(self):
        """check that is_compound_pair() excludes pairs for unknown genes
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        var1.child.info = Info('CQ=missense_variant')
        var2.child.info = Info('CQ=missense_variant')
        var1.child.info.set_genes_and_consequence('1', 100, ('G', ), [])
        var2.child.info.set_genes_and_consequence('1', 100, ('G', ), [])

        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_cnv_paternal(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        extra = [('CIFER_INHERITANCE', 'paternal')]
        child = create_cnv("F",
                           "paternal",
                           chrom=chrom,
                           pos=position,
                           format=extra)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)

        cnv = TrioGenotypes(chrom, position, child, mom, dad)

        # set some variants, so we can alter them later
        snv = self.create_variant(chrom="1",
                                  position="150",
                                  sex="F",
                                  cq="stop_gained")
        snv = self.set_compound_het_var(snv, "110")
        snv.child.format.pop("PP_DNM")  #make sure SNV not a DNM

        # check that these variants are compound hets, no matter which order
        # they are given as.
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))
        self.assertTrue(self.inh.is_compound_pair(snv, cnv))

        #check that it works with a paternal cnv and a de novo snv
        snv = self.set_compound_het_var(snv, "100")
        snv.child.format["PP_DNM"] = '1'
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))

        # check that if the SNV is inherited from the same parent as the CNV,
        # then the pair isn't a compound het.
        snv.child.format.pop("PP_DNM")
        snv = self.set_compound_het_var(snv, "101")
        self.assertFalse(self.inh.is_compound_pair(cnv, snv))

    def test_is_compound_pair_cnv_maternal(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        extra = [('CIFER_INHERITANCE', 'maternal')]
        child = create_cnv("F",
                           "maternal",
                           chrom=chrom,
                           pos=position,
                           format=extra)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)

        cnv = TrioGenotypes(chrom, position, child, mom, dad)

        # set some variants, so we can alter them later
        snv = self.create_variant(chrom="1",
                                  position="150",
                                  sex="F",
                                  cq="stop_gained")
        snv = self.set_compound_het_var(snv, "101")
        snv.child.format.pop("PP_DNM")  #make sure SNV not a DNM

        # check that these variants are compound hets, no matter which order
        # they are given as.
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))
        self.assertTrue(self.inh.is_compound_pair(snv, cnv))

        #check that it works with a paternal cnv and a de novo snv
        snv = self.set_compound_het_var(snv, "100")
        snv.child.format["PP_DNM"] = '1'
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))

        # check that if the SNV is inherited from the same parent as the CNV,
        # then the pair isn't a compound het.
        snv = self.set_compound_het_var(snv, "110")
        snv.child.format.pop("PP_DNM")
        self.assertFalse(self.inh.is_compound_pair(cnv, snv))

    def test_is_compound_pair_cnv_de_novo(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """
        chrom = "1"
        position = "60000"
        extra = [('CIFER_INHERITANCE', 'not_inherited')]
        child = create_cnv("F",
                           "maternal",
                           chrom=chrom,
                           pos=position,
                           format=extra)
        mom = create_cnv("F", "unknown", chrom=chrom, pos=position)
        dad = create_cnv("M", "unknown", chrom=chrom, pos=position)

        cnv = TrioGenotypes(chrom, position, child, mom, dad)

        # set some variants, so we can alter them later
        snv = self.create_variant(chrom="1",
                                  position="150",
                                  sex="F",
                                  cq="stop_gained")
        snv = self.set_compound_het_var(snv, "101")
        snv.child.format.pop("PP_DNM")

        # check that these variants are compound hets, no matter which order
        # they are given as.
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))
        self.assertTrue(self.inh.is_compound_pair(snv, cnv))

        #check the snv can also be maternal
        snv = self.set_compound_het_var(snv, "110")
        snv.child.format.pop("PP_DNM")
        self.assertTrue(self.inh.is_compound_pair(snv, cnv))

    def test_is_compound_pair_proband_only(self):
        """ check that is_compound_pair() includes proband-only pairs
        """

        fam = Family("test")
        fam.add_child("child", 'dad_id', 'mom_id', 'F', '2', "child_vcf")
        fam.set_child()

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="F",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        inh = Autosomal([var1, var2], fam, self.known_gene, "TEST")

        # check that a proband-only passes, regardless of the parental genotypes
        self.assertTrue(inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_allosomal(self):
        """ check that is_compound_pair() works when the father is affected
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="X",
                                   position="150",
                                   sex="F",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="X",
                                   position="160",
                                   sex="F",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "210")
        var2 = self.set_compound_het_var(var2, "202")

        # check when the father is unaffected
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # now check when the father is affected
        self.inh.father_affected = True
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        del var2.father.format['PP_DNM']
        # make sure we can't set the father as het on the X chrom
        with self.assertRaises(ValueError):
            self.set_compound_het_var(var2, "201")

    def test_is_compound_pair_genotype_combinations(self):
        """ check the various genotype combinations for a compound het
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant(chrom="1",
                                   position="150",
                                   sex="M",
                                   cq="stop_gained")
        var2 = self.create_variant(chrom="1",
                                   position="160",
                                   sex="M",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        # check that the expected scenario passes
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

        # check that compound hets with one de novo passes
        var1.child.format["PP_DNM"] = '1'
        var2.child.format.pop("PP_DNM")
        var1 = self.set_compound_het_var(var1, "100")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

        var1.child.format["PP_DNM"] = '1'
        var2.child.format.pop("PP_DNM")
        var1 = self.set_compound_het_var(var1, "100")
        var2 = self.set_compound_het_var(var2, "110")
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

        # check compound het with two de novos fails
        var1.child.format["PP_DNM"] = '1'
        var2.child.format["PP_DNM"] = '1'
        var1 = self.set_compound_het_var(var1, "100")
        var2 = self.set_compound_het_var(var2, "100")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # check that compound hets have to be transmitted from both parents
        var1.child.format.pop("PP_DNM")  #make sure SNVs are not  DNMs
        var2.child.format.pop("PP_DNM")
        var1 = self.set_compound_het_var(var1, "101")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # check that compound hets have to be transmitted from both parents
        var1.child.format.pop("PP_DNM")  #make sure SNVs are not  DNMs
        var2.child.format.pop("PP_DNM")
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "110")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # make sure that only compound hets in trans pass. We exclude
        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "111")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
class TestInheritancePy(unittest.TestCase):
    """ test the Inheritance class
    """
    def setUp(self):
        """ define a family and variant, and start the Inheritance class
        """

        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(child_gender, mom_aff, dad_aff)

        # generate list of variants
        self.variants = [self.create_variant(child_gender)]
        self.variants.append(self.create_variant(child_gender))

        # make sure we've got known genes data
        self.known_genes = {
            "TEST": {
                "inh": ["Monoallelic"],
                "confirmed_status": ["Confirmed DD Gene"]
            }
        }

        self.inh = Autosomal(self.variants, self.trio, self.known_genes,
                             "TEST")

    def create_snv(self, gender, genotype, chrom, pos, cq=None):
        """ create a default variant
        """

        snp_id = "."
        ref = "A"
        alt = "G"
        filt = "PASS"

        if cq is None:
            cq = "missense_variant"

        # set up a SNV object, since SNV inherits VcfInfo
        var = SNV(chrom, pos, snp_id, ref, alt, filt)

        info = "HGNC=TEST;CQ={};random_tag".format(cq)
        format_keys = "GT:DP"
        sample_values = genotype + ":50"

        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()

        return var

    def create_cnv(self, gender, inh, chrom, pos, cq=None):
        """ create a default variant
        """

        snp_id = "."
        ref = "A"
        alt = "<DEL>"
        filt = "PASS"

        if cq is None:
            cq = "transcript_ablation"

        # set up a SNV object, since SNV inherits VcfInfo
        var = CNV(chrom, pos, snp_id, ref, alt, filt)

        info = "CQ={};HGNC=TEST;HGNC_ALL=TEST;END=16000000;SVLEN=5000".format(
            cq)
        format_keys = "INHERITANCE:DP"
        sample_values = inh + ":50"

        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()

        return var

    def create_variant(self,
                       child_gender,
                       chrom="1",
                       position="15000000",
                       cq=None):
        """ creates a TrioGenotypes variant
        """

        # generate a test variant
        try:
            child_var = self.create_snv(child_gender, "0/1", chrom, position,
                                        cq)
        except ValueError:
            child_var = self.create_snv(child_gender, "1/1", chrom, position,
                                        cq)

        mom_var = self.create_snv("F", "0/0", chrom, position, cq)
        dad_var = self.create_snv("M", "0/0", chrom, position, cq)

        var = TrioGenotypes(child_var)
        var.add_mother_variant(mom_var)
        var.add_father_variant(dad_var)

        return var

    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """

        fam = Family("test")
        fam.add_child("child", "child_vcf", "2", child_gender)
        fam.add_mother("mother", "mother_vcf", mom_aff, "2")
        fam.add_father("father", "father_vcf", dad_aff, "1")
        fam.set_child()

        return fam

    def test_check_inheritance_mode_matches_gene_mode(self):
        """ test that check_inheritance_mode_matches_gene_mode() works correctly
        """

        # check that the default inheritance types have been set up correctly
        self.assertEqual(self.inh.inheritance_modes,
                         {"Monoallelic", "Biallelic", "Both"})

        # make sure that the default var and gene inheritance work
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that no gene inheritance overlap fails
        self.inh.gene_inheritance = {"Mosaic"}
        self.inh.inheritance_modes = {"Monoallelic", "Biallelic", "Both"}
        self.assertFalse(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that a single inheritance type still works
        self.inh.gene_inheritance = {"Monoallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that multiple inheritance types for a gene still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that extra inheritance modes are included still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic", "Mosaic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

    def test_set_trio_genotypes(self):
        """ test that set_trio_genotypes() works correctly
        """

        # set the genotypes using the default variant
        var = self.variants[0]
        self.inh.set_trio_genotypes(var)

        # the genotypes for the inh object should match the vars genotypes
        self.assertEqual(self.inh.child, var.child)
        self.assertEqual(self.inh.mom, var.mother)
        self.assertEqual(self.inh.dad, var.father)

        # now remove the parents before re-setting the genotypes
        del var.mother
        del var.father
        self.inh.trio.father = None
        self.inh.trio.mother = None
        self.inh.set_trio_genotypes(var)

        # the child should match the vars genotypes, but the parent's
        # genotypes should be None
        self.assertEqual(self.inh.child, var.child)
        self.assertIsNone(self.inh.mom)
        self.assertIsNone(self.inh.dad)

    def test_add_variant_to_appropriate_list(self):
        """ test that add_variant_to_appropriate_list() works correctly
        """

        var = self.variants[0]
        inheritance = "Monoallelic"
        check = "compound_het"

        # check that compound_het vars are only added to the compound_het list
        self.inh.compound_hets = []
        self.inh.candidates = []
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [])
        self.assertEqual(self.inh.compound_hets,
                         [(var, (check, ), (inheritance, ))])

        # check that single_variant vars are only added to the candidates list
        self.inh.compound_hets = []
        self.inh.candidates = []
        check = "single_variant"
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [(var, [check], [inheritance])])
        self.assertEqual(self.inh.compound_hets, [])

        # check that other vars aren't added either list
        self.inh.compound_hets = []
        self.inh.candidates = []
        check = "nothing"
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [])
        self.assertEqual(self.inh.compound_hets, [])

    def test_check_if_any_variant_is_cnv(self):
        """ test if check_if_any_variant_is_cnv() works correctly
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        child_var = self.create_cnv("F", "unknown", chrom, position)
        mom_var = self.create_cnv("F", "unknown", chrom, position)
        dad_var = self.create_cnv("M", "unknown", chrom, position)

        cnv_var = TrioGenotypes(child_var)
        cnv_var.add_mother_variant(mom_var)
        cnv_var.add_father_variant(dad_var)

        # check that all variants=SNV returns False
        self.assertFalse(self.inh.check_if_any_variant_is_cnv())

        # add a CNV to the variants, then check that we find a CNV
        self.inh.variants.append(cnv_var)
        self.assertTrue(self.inh.check_if_any_variant_is_cnv())

    def set_compound_het_var(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """

        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}

        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]

        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad

        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()

        # set the trio genotypes for the inheritance object
        return var

    def test_check_compound_hets(self):
        """ test that check_compound_hets() works correctly for autosomal vars
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="15000000",
                                   cq="stop_gained")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="16000000",
                                   cq="stop_gained")
        var3 = self.create_variant("F",
                                   chrom="1",
                                   position="17000000",
                                   cq="stop_gained")

        # set the inheritance type, the compound het type ("compound_het"
        # for autosomal variants, and start autosomal inheritance)
        # known_genes = "Biallelic"
        known_genes = {
            "TEST": {
                "inh": ["Biallelic"],
                "confirmed_status": ["Confirmed DD Gene"]
            }
        }
        self.inh = Autosomal([var1, var2, var3], self.trio, known_genes,
                             "TEST")

        variants = [(), ()]

        # check the expected "110, 101" combo passes
        variants[0] = (self.set_compound_het_var(var1, "110"), )
        variants[1] = (self.set_compound_het_var(var2, "101"), )
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                         sorted(variants))

        # check that > 2 valid compound hets passes all variants
        variants = [(), (), ()]
        variants[0] = (self.set_compound_het_var(var1, "110"), )
        variants[1] = (self.set_compound_het_var(var2, "101"), )
        variants[2] = (self.set_compound_het_var(var3, "110"), )
        self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                         sorted(variants))

        # check that a single var fails to give compound hets
        single_var = variants[:1]
        self.assertEqual(self.inh.check_compound_hets(single_var), [])

        # check that zero length list gives no compound hets
        no_vars = []
        self.assertEqual(self.inh.check_compound_hets(no_vars), [])

    def test_is_compound_pair_identical_variants(self):
        """ check that is_compound_pair() excludes compound pairs where the
        members are identical
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="150",
                                   cq="stop_gained")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        # don't include pairs where the first and the second variant are identical
        self.assertFalse(self.inh.is_compound_pair(var1, var1))

        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_both_missense_with_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="150",
                                   cq="missense_variant")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="missense_variant")
        var3 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="inframe_deletion")
        var4 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")

        # dont exclude pairs where both members are not loss-of-function if the
        # proband has parents
        self.assertTrue(self.inh.is_compound_pair(var1, var2))
        self.assertTrue(self.inh.is_compound_pair(var1, var3))

        # make sure it works normally
        self.assertTrue(self.inh.is_compound_pair(var1, var4))

    def test_is_compound_pair_both_missense_without_parents(self):
        """check that is_compound_pair() excludes pairs where both are missense
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="150",
                                   cq="missense_variant")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="missense_variant")
        var3 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="inframe_deletion")
        var4 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")
        var3 = self.set_compound_het_var(var3, "101")
        var4 = self.set_compound_het_var(var4, "101")

        # drop the parents
        self.inh.trio.father = None
        self.inh.trio.mother = None

        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))
        self.assertFalse(self.inh.is_compound_pair(var1, var3))

        # make sure it works if one variant is loss-of-function
        self.assertTrue(self.inh.is_compound_pair(var1, var4))

    def test_is_compound_pair_unknown_gene(self):
        """check that is_compound_pair() excludes pairs for unknown genes
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="150",
                                   cq="stop_gained")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        var1.child.genes = ["."]
        var2.child.genes = ["."]

        # exclude pairs where both members are not loss-of-function
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_cnv(self):
        """ check that is_compound_pair() includes pairs with CNVs
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        child_var = self.create_cnv("F", "unknown", chrom, position)
        mom_var = self.create_cnv("F", "unknown", chrom, position)
        dad_var = self.create_cnv("M", "unknown", chrom, position)

        cnv = TrioGenotypes(child_var)
        cnv.add_mother_variant(mom_var)
        cnv.add_father_variant(dad_var)

        # set some variants, so we can alter them later
        snv = self.create_variant("F",
                                  chrom="1",
                                  position="150",
                                  cq="stop_gained")
        snv = self.set_compound_het_var(snv, "110")

        # exclude pairs where both members are not loss-of-function
        self.assertTrue(self.inh.is_compound_pair(cnv, snv))

    def test_is_compound_pair_proband_only(self):
        """ check that is_compound_pair() includes proband-only pairs
        """

        fam = Family("test")
        fam.add_child("child", "child_vcf", "2", "F")
        fam.set_child()

        # set some variants, so we can alter them later
        var1 = self.create_variant("F",
                                   chrom="1",
                                   position="150",
                                   cq="stop_gained")
        var2 = self.create_variant("F",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        inh = Autosomal([var1, var2], fam, self.known_genes, "TEST")

        # check that a proband-only passes, regardless of the parental genotypes
        self.assertTrue(inh.is_compound_pair(var1, var2))

    def test_is_compound_pair_allosomal(self):
        """ check that is_compound_pair() works when the father is affected
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("M",
                                   chrom="X",
                                   position="150",
                                   cq="stop_gained")
        var2 = self.create_variant("M",
                                   chrom="X",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "210")
        var2 = self.set_compound_het_var(var2, "202")

        # check when the father is unaffected
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # now check when the father is affected
        self.inh.father_affected = True
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

        # make sure we can't set the father as het on the X chrom
        with self.assertRaises(ValueError):
            self.set_compound_het_var(var2, "201")

    def test_is_compound_pair_genotype_combinations(self):
        """ check the various genotype combinations for a compound het
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("M",
                                   chrom="1",
                                   position="150",
                                   cq="stop_gained")
        var2 = self.create_variant("M",
                                   chrom="1",
                                   position="160",
                                   cq="stop_gained")

        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "101")

        # check that the expected scenario passes
        self.assertTrue(self.inh.is_compound_pair(var1, var2))

        # check that compound hets with de novos fail
        var1 = self.set_compound_het_var(var1, "100")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # check that compound hets have to be transmitted from both parents
        var1 = self.set_compound_het_var(var1, "101")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # check that compound hets have to be transmitted from both parents
        var1 = self.set_compound_het_var(var1, "110")
        var2 = self.set_compound_het_var(var2, "110")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        # make sure that only compound hets in trans pass. We exclude
        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "101")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))

        var1 = self.set_compound_het_var(var1, "111")
        var2 = self.set_compound_het_var(var2, "111")
        self.assertFalse(self.inh.is_compound_pair(var1, var2))