Esempio n. 1
0
def extract_red_alphashape(cloud, robot):
    """
    extract red, get alpha shape, downsample
    """
    raise NotImplementedError
    
    # downsample cloud
    cloud_ds = cloudprocpy.downsampleCloud(cloud, .01)
    
    # transform into body frame
    xyz1_kinect = cloud_ds.to2dArray()
    xyz1_kinect[:,3] = 1
    T_w_k = berkeley_pr2.get_kinect_transform(robot)
    xyz1_robot = xyz1_kinect.dot(T_w_k.T)
    
    # compute 2D alpha shape
    xyz1_robot_flat = xyz1_robot.copy()
    xyz1_robot_flat[:,2] = 0 # set z coordinates to zero
    xyz1_robot_flatalphashape = cloudprocpy.computeAlphaShape(xyz1_robot_flat)
    
    # unfortunately pcl alpha shape func throws out the indices, so we have to use nearest neighbor search
    cloud_robot_flatalphashape = cloudprocpy.CloudXYZ()
    cloud_robot_flatalphashape.from2dArray(xyz1_robot_flatalphashape)
    cloud_robot_flat = cloudprocpy.CloudXYZ()
    cloud_robot_flat.from2dArray(xyz1_robot_flat)
    alpha_inds = cloudprocpy.getNearestNeighborIndices(xyz1_robot_flatalphashape, xyz1_robot_flat)

    xyz_robot_alphashape = xyz1_robot_flatalphashape[:,:3]
    
    # put back z coordinate
    xyz_robot_alphashape[:,2] = xyz1_robot[alpha_inds,2] 

    return xyz_robot_alphashape[:,:3]
Esempio n. 2
0
def downsample(xyz, v):
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.ones((len(xyz), 4), 'float')
    xyz1[:, :3] = xyz
    cloud.from2dArray(xyz1)
    cloud = cloudprocpy.downsampleCloud(cloud, v)
    return cloud.to2dArray()[:, :3]
def pc2_to_cloudprocpy(pc2, transform_world, point_cloud_filter):
    """
    :param pc2: the point cloud to read from
    :type  pc2: sensor_msgs.PointCloud2
    :param cam_pose_world: 4x4 np.ndarray of transform for cloud in frame world
    """
    points_gen = read_points(pc2, skip_nans=False)
    
    rot = transform_world[:3,:3]
    trans = transform_world[:3,3]
    points = list()
    for pt in points_gen:
        if point_cloud_filter(pt):
            pt = list(np.dot(rot, pt) + trans)
            pt.append(1)
            points.append(pt)
    
    
    # reorganize cloud data to construct a cloud object
    n_dim = 4 # 3 spatial dimension + 1 for homogenity
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.array(points)
    cloud.from2dArray(xyz1)
    
    return cloud
Esempio n. 4
0
def downsample(xyz, v):
    import cloudprocpy
    if xyz.shape[1] == 3:
        cloud = cloudprocpy.CloudXYZ()
        xyz1 = np.ones((len(xyz), 4), 'float')
        xyz1[:, :3] = xyz
        cloud.from2dArray(xyz1)
        cloud = cloudprocpy.downsampleCloud(cloud, v)
        return cloud.to2dArray()[:, :3]
    else:
        # rgb fields needs to be packed and upacked as described in here
        # http://docs.pointclouds.org/1.7.0/structpcl_1_1_point_x_y_z_r_g_b.html

        xyzrgb = xyz
        n = xyzrgb.shape[0]
        cloud = cloudprocpy.CloudXYZRGB()
        xyzrgb1 = np.ones((n, 8), 'float')
        xyzrgb1[:, :3] = xyzrgb[:, :3]
        xyzrgb1[:, 4] = cloudprocpy.packRGBs(xyzrgb[:, 3:] * 255.0)
        xyzrgb1[:, 5:] = np.zeros(
            (n, 3))  # padding that is not used. set to zero just in case
        cloud.from2dArray(xyzrgb1)
        cloud = cloudprocpy.downsampleColorCloud(cloud, v)
        xyzrgb1 = cloud.to2dArray()
        return np.c_[xyzrgb1[:, :3],
                     cloudprocpy.unpackRGBs(xyzrgb1[:, 4]) / 255.0]
Esempio n. 5
0
 def kinect_callback(self, cloud_msg):
     # convert from point cloud message to cloudprocpy.CloudXYZ
     points_gen = self.read_points(cloud_msg, skip_nans=False)
     points = []
     for pt in points_gen:
         pt = list(pt)
         pt.append(1)
         points.append(pt)
         
     # reorganize cloud data to construct a cloud object 
     n_dim = 4 # 3 spatial dimension + 1 for homogenity   
     cloud = cloudprocpy.CloudXYZ()
     xyz1 = np.array(points)
     xyz1 = np.reshape(xyz1, (raven_constants.Kinect.height, raven_constants.Kinect.width, n_dim))
     cloud.from3dArray(xyz1)
         
     #save cloud for next run
     np.save('environment_obstacles_%d'%(self.cloud_id), xyz1)
         
     # add new bodies and cloud first
     new_cd_body_names = self.generateBodies(cloud, self.cloud_id)
         
     # remove previous bodies and cloud
     for name in self.cd_body_names:
         self.env.Remove(self.env.GetKinBody(name))
         
     self.cd_body_names = new_cd_body_names
     self.cloud_id = self.cloud_id+1
Esempio n. 6
0
def remove_outliers(xyz, thresh=2.0, k=15):
    import cloudprocpy
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.ones((len(xyz),4),'float')
    xyz1[:,:3] = xyz
    cloud.from2dArray(xyz1)
    cloud = cloudprocpy.removeOutliers(cloud, thresh, k)
    return cloud.to2dArray()[:,:3]
Esempio n. 7
0
def median_filter(xyz, window_size, max_allowed_movement):
    import cloudprocpy
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.ones((len(xyz),4),'float')
    xyz1[:,:3] = xyz
    cloud.from2dArray(xyz1)
    cloud = cloudprocpy.medianFilter(cloud, window_size, max_allowed_movement)
    return cloud.to2dArray()[:,:3]
Esempio n. 8
0
    def voxelize(self, cloud, voxelSize=0.003):
        '''TODO'''

        cloud = numpy.ascontiguousarray(
            cloud)  # cloudprocpy assumes this ordering
        n = cloud.shape[0]
        augment = zeros((n, 1))
        bigCloud = concatenate((cloud, augment), axis=1)
        cloudTrajopt = cloudprocpy.CloudXYZ()
        cloudTrajopt.from2dArray(bigCloud)
        dsCloud = cloudprocpy.downsampleCloud(cloudTrajopt, voxelSize)
        cloud = dsCloud.to2dArray()[:, :3]
        return cloud
Esempio n. 9
0
    def filterStatisticalOutliers(self, cloud, kNeighbors=50, std=1.0):
        '''TODO'''

        cloud = numpy.ascontiguousarray(cloud)  # cloudprocpy assumes this
        n = cloud.shape[0]
        augment = zeros((n, 1))
        bigCloud = concatenate((cloud, augment), axis=1)
        cloudTrajopt = cloudprocpy.CloudXYZ()
        cloudTrajopt.from2dArray(bigCloud)
        dsCloud = cloudprocpy.statisticalOutlierRemoval(
            cloudTrajopt, kNeighbors, std)
        cloud = dsCloud.to2dArray()[:, :3]
        return cloud
Esempio n. 10
0
def cluster_filter(xyz, tol=0.08, minsize=200):
    import cloudprocpy
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.ones((len(xyz),4),'float')
    xyz1[:,:3] = xyz
    cloud.from2dArray(xyz1)

    while True:
        filter_result = cloudprocpy.clusterFilter(cloud, tol, minsize)
        filter_result = filter_result.to2dArray()[:,:3]
        if len(filter_result) > 0:
            cloud = filter_result
            break
        else:
            minsize = int(0.5 * minsize)

    return cloud
Esempio n. 11
0
def extract_red(rgb, depth, T_w_k):
    """
    extract red points and downsample
    """

    hsv = cv2.cvtColor(rgb, cv2.COLOR_BGR2HSV)
    h = hsv[:, :, 0]
    s = hsv[:, :, 1]
    v = hsv[:, :, 2]

    red_mask = ((h < 10) | (h > 150)) & (s > 100) & (v > 100)

    valid_mask = depth > 0

    xyz_k = clouds.depth_to_xyz(depth, berkeley_pr2.f)
    xyz_w = xyz_k.dot(T_w_k[:3, :3].T) + T_w_k[:3, 3][None, None, :]

    z = xyz_w[:, :, 2]
    z0 = xyz_k[:, :, 2]
    if DEBUG_PLOTS:
        cv2.imshow("z0", z0 / z0.max())
        cv2.imshow("z", z / z.max())
        cv2.imshow("rgb", rgb)
        cv2.waitKey()

    height_mask = xyz_w[:, :, 2] > .7  # XXXX pass in parameter

    good_mask = red_mask & height_mask & valid_mask
    if DEBUG_PLOTS:
        cv2.imshow("red", red_mask.astype('uint8') * 255)
        cv2.imshow("above_table", height_mask.astype('uint8') * 255)
        cv2.imshow("red and above table", good_mask.astype('uint8') * 255)
        print "press enter to continue"
        cv2.waitKey()

    good_xyz = xyz_w[good_mask]

    cloud = cloudprocpy.CloudXYZ()
    good_xyz1 = np.zeros((len(good_xyz), 4), 'float32')
    good_xyz1[:, :3] = good_xyz
    cloud.from2dArray(good_xyz1)

    cloud_ds = cloudprocpy.downsampleCloud(cloud, .01)

    return cloud_ds.to2dArray()[:, :3]
Esempio n. 12
0
    def computeNormals(self, cloud, viewPoint=None):
        '''TODO'''

        cloud = numpy.ascontiguousarray(cloud)  # cloudprocpy assumes this
        augment = zeros((cloud.shape[0], 1))
        bigCloud = concatenate((cloud, augment), axis=1)
        cloudTrajopt = cloudprocpy.CloudXYZ()
        cloudTrajopt.from2dArray(bigCloud)
        normals = cloudprocpy.normalEstimation(cloudTrajopt).to2dArray()[:,
                                                                         4:7]

        # reverse any normals going in the wrong direction
        if viewPoint is not None:
            for i in xrange(len(normals)):
                d = viewPoint - cloud[i]
                if dot(normals[i], d / norm(d)) < 0:
                    normals[i] = -normals[i]

        return normals
Esempio n. 13
0
    def addCloudToEnvironment(self, cloud, cubeSize=0.02):
        '''
    Add a point cloud to the OpenRAVE environment as a collision obstacle.
    
    @param cloud: list of 3-tuples, [(x1,y1,z1),...,(xn,yn,zn)]
    '''

        # remove existing cloud, if there is one
        self.removeCloudFromEnvironment()

        # convert point cloud to expected format
        cloud = ascontiguousarray(cloud)  # cloudprocpy assumes this
        cloud = concatenate((cloud, zeros((cloud.shape[0], 1))), axis=1)
        cloudTrajopt = cloudprocpy.CloudXYZ()
        cloudTrajopt.from2dArray(cloud)

        # downsample and add to environment
        dsCloud = cloudprocpy.downsampleCloud(cloudTrajopt, cubeSize)
        self.obstacleCloud = make_kinbodies.create_boxes(
            self.env,
            dsCloud.to2dArray()[:, :3], cubeSize / 2.0)
Esempio n. 14
0
def callback(cloud_msg):
    global callbackOnceOnly
    if not callbackOnceOnly:
        return
    callbackOnceOnly = False

    # convert from point cloud message to cloudprocpy.CloudXYZ
    points_gen = read_points(cloud_msg, skip_nans=False)
    points = []
    for pt in points_gen:
        pt = list(pt)
        pt.append(1)
        points.append(pt)
    cloud = cloudprocpy.CloudXYZ()
    xyz1 = np.array(points)
    # cloud has to be organized for generateBodies to work
    # hardcoded height and width
    xyz1 = np.reshape(xyz1, (480, 640, 4))
    cloud.from3dArray(xyz1)

    global cloud_handle
    global names
    global id

    # add new bodies and cloud first
    names2 = generateBodies(cloud, id)

    #cloud_handle2 = plotCloud(cloud)

    # remove previous bodies and cloud
    for name in names:
        env.Remove(env.GetKinBody(name))
    del cloud_handle

    names = names2
    #cloud_handle = cloud_handle2
    id = (id + 1) % 2