Esempio n. 1
0
class EdgeContainer:
    """
    Container class for Edge objects.
    """
    def __init__(self):
        self.elements = []
        self.clusters = Clusters()

    def add_edge(self, source_node, sink_nodes):
        """
        Create and store a new Edge object for the given source
        and sink nodes.

        @type  source_node: str
        @param source_node: A string representing the source node of a directed edge.
        @type sink_nodes: list
        @param sink_nodes: A list containing strings of each sink node.
        """
        self.clusters.add(source_node, sink_nodes)
        edge = Edge(source_node, sink_nodes)
        self.elements.append(edge)

    def write_to_file(self, output):
        """
        Write the output string of each file to
        the given text file.

        @type  output: file
        @param output: An open text file to write file strings to.
        """
        for edge in self.elements:
            edge_string = edge.output_string()
            output.write(edge_string)
            output.write("\n")
        self.clusters.write_statistics_to_file(output)
    def test_merge_df(self):
        cluster = Clusters(
            "../tests/data/test_1k_cluster_data.csv",
            "dec0dedfeed1111111111111",
            "addedfeed000000000000000",
            "testCluster",
        )
        cell_metadata_df = Annotations(
            self.CELL_METADATA_PATH,
            ["text/csv", "text/plain", "text/tab-separated-values"],
        )
        cell_metadata_df.preprocess()
        cell_names_cell_metadata_df = np.asarray(cell_metadata_df.file["NAME"])
        cell_names_cluster_df = np.asarray(cluster.file["NAME"])
        # Cell names found in both cluster and metadata files
        common_cell_names = cell_names_cluster_df[
            np.isin(cell_names_cluster_df, cell_names_cell_metadata_df)
        ]
        print(f"common cell names: {common_cell_names}")
        # Perform merge
        print(cluster.file[["NAME", "x", "y", "z"]])
        cluster.merge_df(cluster.file[["NAME", "x", "y", "z"]], cell_metadata_df.file)

        # Ensure ONLY common cell names found in cell metadata file and cluster file
        # are in the newly merged df
        result = all(
            cell[0] in common_cell_names for cell in cluster.file["NAME"].values
        )
        self.assertTrue(
            result,
            f"Merge was not performed correctly. Merge should be performed on 'NAME'",
        )
Esempio n. 3
0
def main():
    parallel = True
    num_processes = 16
    functions = Functions()
    connect = functions.get_config()

    c = Clusters(connect, num_processes, parallel)
    TOTAL_TASKS.observe(2) 
    c.process_clusters()
Esempio n. 4
0
 def test_validate_header_for_coordinate_values_false(self):
     """Ensures validate_header_for_coordinate_values returns false when
      coordinate is missing in header
     """
     cluster = Clusters(
         "../tests/data/cluster_bad_missing_coordinate.txt",
         "5d276a50421aa9117c982845",
         "5dd5ae25421aa910a723a337",
         "testCluster",
     )
     self.assertFalse(cluster.validate_header_for_coordinate_values())
Esempio n. 5
0
 def test_validate_header_for_coordinate_values_true(self):
     """Ensures validate_header_for_coordinate_values returns true when
     coordintate value is in cluster file
      """
     cluster = Clusters(
         "../tests/data/cluster_example.txt",
         "5d276a50421aa9117c982845",
         "5dd5ae25421aa910a723a337",
         "testCluster",
     )
     self.assertTrue(cluster.validate_header_for_coordinate_values())
Esempio n. 6
0
File: ikmeans.py Progetto: rh01/TSWC
    def fit(self):
        i = self.start_lvl - self.curr_lvl
        X = np.asarray(list(zip(self.cur_cA, self.cD[i])))
        if self.centers is not None:
            if self.union_level:
                self.centers = centnters_update(self.centers,
                                                self.__split_mask)
            else:
                self.centers = centnters_update(self.centers)
            self.k = len(self.centers)
            kmeans = KMeans(n_clusters=self.k, init=self.centers)
        else:
            kmeans = KMeans(n_clusters=self.k)

        kmeans.fit(X)
        self.labels = kmeans.predict(X)
        self.centers = kmeans.cluster_centers_
        self.clasters = Clusters(self.data, self.labels, self.recunstruct)

        return Clusters(self.data, self.labels, self.recunstruct)
Esempio n. 7
0
def diveg(f="data/weather.csv",loud=False):
  the=about.defaults()
  t=Tab(file=f)
  all = sorted(t.rows)
  for x in all: print(x.y())
  return 1
  c=Clusters(t,the,cols=t.cols.y, loud=loud)
  print([col.txt for col in t.cols.y])
  all = sorted(c.all)
  for t1 in c.all: print(rs(t1.y()))
  for span in all[0].bins(all[-1],the): print(span)
  print(the)
Esempio n. 8
0
    def __pyp_means(self, freq, lamb, theta):
	
	## INITIALIZATION
	N = len(values)
	m1 = np.dot(values, counts)/float(N)

	clusters = Clusters()
	clusters.assignments[m1] = []
	clusters.c = 1
	clusters.map = []

	D_r = []
	notConverged = True	
	epsilon = .001
	
	## NEED WHILE LOOP IN CONVERGENCE
	while notConverged:
	    old_clusters = clusters
	# main for loop
	    for x in freq.keys():
		d = dict()

		for cluster_mean in clusters.assignments.keys():
		    d[cluster_mean] = np.power((x - cluster_mean),2) #squared difference between x and cluster mean
		    min_d = min(d.values())
		    new_cluster = min(d, key=d.get)  #get cluster mean with minimum distance from x

		    if min_d - theta > lamb - np.log(clusters.c)*theta:
			D_r.append(x) 

		    else:
			clusters = assign_cluster(x, new_cluster, clusters)

		clusters = re_cluster(D_r, clusters, freq, lamb, theta) #re-cluster the unclustered data set
		clusters = center_agglomeration(clusters, lamb, theta) #center agglomeration
		clusters = update(clusters, freq) #update c, re-compute cluster means
		notConverged = check_convergence(old_clusters, clusters, epsilon)
		
	return clusters
Esempio n. 9
0
    def cluster_events(self,
                       clustering_type,
                       features=None,
                       **clustering_parameters):
        """Create a NILM.Clusters object as Meter attribute.

        Parameters
        ----------
        clustering_type: string
            Name of a clustering function. This function will be used to
            cluster the events. Needs to be one of the keys of the dictionnary
            'clustering_types' of NILM.Clusters object.

        clustering_parameters: dict (optional)
            Arguments to be passed as argument of the function which will be
            used to cluster the events. Arguments not informed will take the
            default value defined in the dictionnary 'clustering_types' of
            NILM.Clusters object.
            """
        clusters = Clusters(clustering_type, **clustering_parameters)
        clusters.clustering(self, features)
        self.clusters_ = clusters
        print "Meter: events clustered!"
Esempio n. 10
0
 def test_non_coordinate_case_integrity(self):
     # if headers of this file change, the reference for the assert needs to be updated
     cluster = Clusters(
         "../tests/data/test_1k_cluster_data.csv",
         "dec0dedfeed1111111111111",
         "addedfeed000000000000000",
         "testCluster",
     )
     assert cluster.headers == [
         "NAME",
         "x",
         "y",
         "z",
         "CLUSTER",
         "SUBCLUSTER",
         "1",
     ], "cluster instantiation should only downcase coordinate header columns"
Esempio n. 11
0
class KMeans:
    def __init__(self, coordinates, number_of_clusters):
        self.clusters = Clusters(number_of_clusters, coordinates.shape[1])
        self.data = Data(coordinates, self.clusters)
        self.clusters.set_data(self.data)

    def start(self, termination_condition_threshold):
        self.data.update_memberships()
        while self.clusters.update_centers(
        ) >= termination_condition_threshold:
            self.data.update_memberships()
        return self.clusters.total_error()

    def plot_data(self):
        self.data.plot()
        self.clusters.plot()
        plt.show()
Esempio n. 12
0
    def test_cluster_type_inference(self):
        """Confirm consistency of type inference behavior
        in instantiated data frame
        Note: metadata has similar set of tests
        """
        cluster = Clusters(
            "../tests/data/cluster_NA.txt",
            "addedfeed000000000000000",
            "dec0dedfeed1111111111111",
            "testCluster",
        )

        # integers, empty cell and string as inputs for numeric annotation
        assert isinstance(cluster.file["NA_i_n_s__grp"]["group"][3],
                          str), "empty cell -> NaN, expect coercion to string"

        # integers and empty cell as inputs for numeric annotation
        assert isinstance(cluster.file["NA_i_n_grp"]["group"][3],
                          str), "empty cell -> NaN, expect coercion to string"

        # floats, empty cell and string as inputs for numeric annotation
        assert isinstance(cluster.file["NA_f_n_s__grp"]["group"][3],
                          str), "empty cell -> NaN, expect coercion to string"

        # floats and empty cell as inputs for numeric annotation
        assert isinstance(cluster.file["NA_f_n_grp"]["group"][3],
                          str), "empty cell -> NaN, expect coercion to string"

        # integers, empty cell and string as inputs for group annotation
        assert isinstance(
            cluster.file["NA_i_n_s__num"]["numeric"][3],
            float), "empty cell -> NaN that remains float (not coerced)"

        # floats, empty cell and string as inputs for group annotation
        assert isinstance(
            cluster.file["NA_f_n_s__num"]["numeric"][3],
            float), "empty cell -> NaN that remains float (not coerced)"
Esempio n. 13
0
def main():

    debug = Debugger()
    chrono = Chrono()
    universe = Universe(debug)
    source = Source(debug).get_source()
    bucket_chain = BucketChain(debug, chrono, universe, source)
    clusters = Clusters(debug, chrono, universe)
    algorithm = OnlineClustering(debug, universe, bucket_chain, clusters)

    while True:
        operation_time = time.time()
        if bucket_chain.is_updated():
            universe.compute_log_n_df()
            bucket_chain.compute_universal_counts()
            bucket_chain.compute_universal_tfidf()
            clusters.update_centroid_counts()
            clusters.update_centroid_tfidf()
            algorithm.pre_clustering_work()
            algorithm.online_clustering()
            clusters.remove_old_clusters()
            universe.prune_terms(clusters)
            debug.log("BUCKET FINISHED IN: " +
                      str(time.time() - operation_time))
            clusters.debug_active_clusters()
            clusters.save_active_clusters()
Esempio n. 14
0
 def __init__(self):
     self.elements = []
     self.clusters = Clusters()
Esempio n. 15
0
def loadClusters():
    return Clusters.Clusters()
Esempio n. 16
0
 def __init__(self, coordinates, number_of_clusters):
     self.clusters = Clusters(number_of_clusters, coordinates.shape[1])
     self.data = Data(coordinates, self.clusters)
     self.clusters.set_data(self.data)
Esempio n. 17
0
 def __init__(self, cluster_file = "/home/nlg-02/ar_009/paths"):
   self.clusters = Clusters.read_clusters(cluster_file)
 def set_data_array(self, args, kwargs):
     return Clusters.set_data_array(*args, **kwargs)