Esempio n. 1
0
    def calc(self):
        '''
        Calculates the posCoG of the outer wing tank.
        The cog of the fuel tank will be assumed to be constant for all filling levels.
        '''
        xRoot = self.parent.aircraft.wing.xRoot.getValue()
        cRoot = self.parent.aircraft.wing.cRoot.getValue()
        sweep = self.parent.aircraft.wing.phiLE.getValue()
        tr = self.parent.aircraft.wing.taperRatio.getValue()
        halfSpan = self.parent.aircraft.wing.span.getValue() / 2.
        yBegin = 0.59 * halfSpan
        yEnd = 0.84 * halfSpan
        
        cBegin = calc_chord(cRoot, halfSpan, tr, yBegin)
        xBegin = xRoot + cmath.tan(sweep * cmath.pi / 180.) * yBegin
        cEnd = calc_chord(cRoot, halfSpan, tr, yEnd)
        xEnd = xRoot + cmath.tan(sweep * cmath.pi / 180.) * yEnd
        
        dy = yEnd - yBegin
        cog = calc_trapezoidCenterOfArea(xBegin, yBegin, cBegin, xEnd, cEnd, dy)

        return self.setValueCalc(cog[0])


        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 2
0
 def calcChortAtEta(self, eta, phiLE, phiTE, cRoot, etaKink, span, yFuselage):
     """
     todo::
        This is a copy of the function in flap.py maybe need to shift this somewhere else
     """
     # if eta lies at the fuselage than return cRoot
     if eta <= yFuselage / span / 2.:
         return cRoot
     
     # elif eta lies in the inboard section return cRoot minus the bit lost due to leading edge sweep angle
     elif eta <= etaKink:
         l = span / 2.*eta - yFuselage
         cFront = l / tan(((90 - phiLE)) * rad)
         return cRoot - cFront
     
     # elif eta lies in the outboard section return cRoot minus the bit lost due to leading edge sweep angle + the bit gained due to the trailingedge angle
     elif eta > etaKink and eta < 1.:
         l1 = span / 2.*eta - yFuselage
         l2 = span / 2.*eta - span / 2.* etaKink
         cFront = l1 / tan(((90 - phiLE) * rad))
         cBack = l2 / tan(((90 - phiTE) * rad))
         return cRoot - cFront + cBack
     else:
         self.log.warning('VAMPzero CHORD: Calculation of chord at eta location called for invalid eta: %s' % str(eta))
         raise ValueError
Esempio n. 3
0
    def calc(self):
        '''
        Calculates the coordinates of the vertical tailplane center of gravity location
        
        :Source: Civil Jet Aircraft Design, L.R. Jenkinson and P. Simpkin and D. Rhodes, Butterworth Heinemann, 1999,  p. 148
        '''
        span = self.parent.span.getValue()
        cRoot = self.parent.cRoot.getValue()
        phiLE = self.parent.phiLE.getValue()
        phiTE = self.parent.phiTE.getValue()
        xRoot = self.parent.xRoot.getValue()
        cMAC = self.parent.cMAC.getValue()
        yMAC = self.parent.yMAC.getValue()

        bCG = span * 0.55 / 2.       # Spanwise Location of the CoG
        cCG = cRoot - bCG * tan(phiLE * rad) + bCG * tan(phiTE * rad)

        #Calculate absolute Position of Wing Root from cMAC, yMAC and Pos
        xRoot = xRoot - (0.25 * cMAC + yMAC * tan(phiLE * rad))

        #Calculated the X Location of the center of Gravity
        xCG = xRoot + tan(phiTE * rad) * bCG + 0.42 * cCG

        return self.setValueCalc(xCG)

        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 4
0
    def calc(self):
        '''
        Calculates the coordinates of the wings center of gravity location
        Calculation Formula for a swept wing is taken
        
        *Frontspar will be estimated to be at 25% of the chord 
        *Rearspar will be estimated to be at 70% of the chord
        
        :Source: Civil Jet Aircraft Design, L.R. Jenkinson and P. Simpkin and D. Rhodes, Butterworth Heinemann, 1999, p. 148
        '''
        b = self.parent.span.getValue()
        cRoot = self.parent.cRoot.getValue()
        phiLE = self.parent.phiLE.getValue()
        phiTE = self.parent.phiTE.getValue()
        xMAC = self.parent.xMAC.getValue()
        yMAC = self.parent.yMAC.getValue()

        bCG = b * 0.35 / 2.       #Spanwise Location of the CoG
        cCG = cRoot - bCG * tan(phiLE * rad) + bCG * tan(phiTE * rad)

        #Calculate absolute Position of Wing Root from cMAC, yMAC and Pos
        # take the x position of the MAC
        # add the x distance to the chord of the cog 'tan(phiLE * rad) * (bCG - yMAC)'
        # add the distance to the front spar point '(0.25 * cCG)'
        # the center of gravity is at 70% of the distance between the front (0.25) and rear (0.7) spar '0.7 * (0.7 - 0.25) * cCG'
        xCG = xMAC + tan(phiLE * rad) * (bCG - yMAC) + 0.25 * cCG + (0.7 - 0.25) * cCG * 0.7 

        return self.setValueCalc(xCG)
        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 5
0
    def calcFuselageMount(self):
        '''
        Calculates the Z-location of the engine for the fuselage mounted engines from the engines diameter and the
        fuselage diameter.

        Takes into account a free angle of 12.5 deg in the x direction and 6deg in y direction
        '''
        dEngine = self.parent.aircraft.engine.dEngine.getValue()
        lEngine = self.parent.aircraft.engine.lEngine.getValue()
        xEngine = self.parent.aircraft.engine.xEngine.getValue()
        yEngine = self.parent.aircraft.engine.yEngine.getValue()
        xLandingGear = self.parent.aircraft.landingGear.xLandingGear.getValue()
        yLandingGear = self.parent.aircraft.landingGear.yLandingGear.getValue()
        zLandingGear = self.parent.aircraft.landingGear.zLandingGear.getValue()

        # Estimate position in terms of x-axis
        deltaX = abs(xLandingGear-xEngine-lEngine*0.66)
        deltaZinX = tan(12.5*rad)*deltaX

        #Estimate position in y-axis
        deltaY = abs(yLandingGear-yEngine)
        deltaZinY = tan(6.*rad)*deltaY

        try:
            deltaZ = max(deltaZinX, deltaZinY)
        except:
            deltaZ = max(deltaZinX.real, deltaZinY.real)

        return self.setValueCalc(zLandingGear + deltaZ + 0.5* dEngine)
Esempio n. 6
0
def oneArgFuncEval(function, value):
        # Evaluates functions that take a complex number input
        if function == "sin":
                return cmath.sin(value)
        elif function == "cos":
                return cmath.cos(value)
        elif function == "tan":
                return cmath.tan(value)
        elif function == "asin":
                return cmath.asin(value)
        elif function == "acos":
                return cmath.acos(value)
        elif function == "atan":
                return cmath.atan(value)
        elif function == "csc":
                return 1.0 / cmath.sin(value)
        elif function == "sec":
                return 1.0 / cmath.cos(value)
        elif function == "cot":
                return 1.0 / cmath.tan(value)        
        elif function == "ln":
                return cmath.log(value)
        elif function == "sqr":
                return cmath.sqrt(value)
        elif function == "abs":
                return cmath.sqrt((value.real ** 2) + (value.imag ** 2))
        elif function == "exp":
                return cmath.exp(value)
        if function == "sinh":
                return cmath.sinh(value)
        elif function == "cosh":
                return cmath.cosh(value)
        elif function == "tanh":
                return cmath.tanh(value)
        elif function == "asinh":
                return cmath.asinh(value)
        elif function == "acosh":
                return cmath.acosh(value)
        elif function == "atanh":
                return cmath.atanh(value)
        elif function == "ceil":
                return math.ceil(value.real) + complex(0, 1) * math.ceil(value.imag)
        elif function == "floor":
                return math.floor(value.real) + complex(0, 1) * math.floor(value.imag)
        elif function == "trunc":
                return math.trunc(value.real) + complex(0, 1) * math.trunc(value.imag)
        elif function == "fac":
                if value.imag == 0 and value < 0 and value.real == int(value.real):
                        return "Error: The factorial function is not defined on the negative integers."
                return gamma(value + 1)
        elif function == "log":
                return cmath.log10(value)
Esempio n. 7
0
    def calc(self):
        '''
        Calculates the horizontail tail's mean aerodynamic chord's x Location (tip)
        
        :Source: Simple Geometry based on phi and dihedral
        '''
        yMAC = self.parent.yMAC.getValue()
        phi = self.parent.phiLE.getValue()
        dihedral = self.parent.dihedral.getValue()
        xRoot = self.parent.xRoot.getValue()

        return self.setValueCalc(xRoot + tan(phi * rad) * yMAC + tan(dihedral * rad) * yMAC)
        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 8
0
def cdigamma(z) :
    """Digamma function with complex arguments"""
    z = complex(z)

    g = __lanczos_gamma
    c = __lanczos_coefficients 
        
    zz = z
    if z.real < 0.5 :
        zz = 1 -z
        
    n=0.
    d=0.
    for k in range(len(c)-1,0,-1):
        dz =1./(zz+(k+1)-2);
        dd =c[k] * dz
        d = d + dd 
        n = n - dd * dz

    d = d + c[0]
    gg = zz + g - 0.5
    f = cm.log(gg) + (n/d - g/gg)

    if z.real<0.5 :
        f -= pi / cm.tan( pi * z)
        
    return f
Esempio n. 9
0
    def calcWingMount(self):
        '''
        Calculates the Z-location of the engine from the engines diameter and the wing position. 
        It is assumed that the engine is located underneath the wing.
        
        The calculation follows the picture from Stanfords online course, but does apply some simplifications: 
        
        * As location x/c is choosen to be -0.1; h/c is taken for the easy curve and therefore should be ~ -0.09
        * The end of the outer flow is chosen to be at 0.65% of overall engine length
        * As no curvature information for the nacelle is available h is parallel to the engine axis
        * values are relative to the leading edge of the wing 

        :Source: http://adg.stanford.edu/aa241/propulsion/engineplacement.html        
        '''
        
        span = self.parent.aircraft.wing.span.getValue()
        eta = self.parent.aircraft.wing.etaEngine.getValue()
        phiLE = self.parent.aircraft.wing.phiLE.getValue()
        phiTE = self.parent.aircraft.wing.phiTE.getValue()
        cRoot = self.parent.aircraft.wing.cRoot.getValue()
        etaKink = self.parent.aircraft.wing.etaKink.getValue()
        yFuselage = self.parent.aircraft.wing.yFuselage.getValue()
        
        hOverC = -0.09        
        c = self.calcChortAtEta(eta, phiLE, phiTE, cRoot, etaKink, span, yFuselage) 

        zRoot = self.parent.aircraft.wing.zRoot.getValue()
        dihedral = self.parent.aircraft.wing.dihedral.getValue()

        yEngine = self.parent.yEngine.getValue()
        dEngine = self.parent.dEngine.getValue()

        dZ = zRoot - dEngine / 2. + tan(dihedral * rad) * yEngine + hOverC * c

        return self.setValueCalc(dZ)
Esempio n. 10
0
    def cpacsExport(self, CPACSObj):
        '''
        this methods exports all parameters nested in the component. Nested Components will be called as well. 
        cpacsPath must be filled
        
        :Author: Jonas Jepsen
        :param CPACSObj: the CPACS object holding the data for export
        '''
        # self.LoD.setValue(1)    # level of detail [0,1]
        if self.location.getValue():
            xRoot = self.xRoot.getValue()
            zRoot = self.zRoot.getValue()
        else:
            vtp_span = self.aircraft.vtp.span.getValue()
            vtp_phiLE = (self.aircraft.vtp.phiLE.getValue())*pi/180.

            xRoot = tan(vtp_phiLE)*vtp_span
            try:
                xRoot = xRoot.real
            except:
                pass

            zRoot = vtp_span


        createHTP(CPACSObj, self.id, xRoot, zRoot, self.airfoilr.tc.getValue(), self.airfoilt.tc.getValue(), self.cRoot.getValue(),
                  self.cTip.getValue(), self.span.getValue(), self.phiLE.getValue(), self.dihedral.getValue(),
                  self.LoD.getValue(), self.location.getValue())

        super(wing, self).cpacsExport(CPACSObj)
Esempio n. 11
0
    def calc(self):
        '''
        Calculates the z-position of the landing gear with respect to the required lift off angle (LoA) for a rotation without tail strike.
        This angle is estimated by a value of 12.5 degrees.

        Includes a minimum ground clearance criterion of 1m below the fuselage

        :Author: Patrick Goden
        '''    
        ltail = self.parent.aircraft.fuselage.ltail.getValue()
        lfus = self.parent.aircraft.fuselage.lfus.getValue()
        dfus = self.parent.aircraft.fuselage.dfus.getValue()
        xLG = self.parent.xLandingGear.getValue()
        
        LoA = 12.5  #[deg],assumption
        
        zLG = dfus/2. + (lfus - ltail - xLG) * tan(LoA*rad)

        try:
            if zLG.real < dfus.real/2.+1.:
                zLG = dfus/2.+1.
        except:
            pass

        return self.setValueCalc(-zLG)
Esempio n. 12
0
    def calc(self):
        '''
        Calculates the leading edge postion of the strut tip from the wing geometry

        The calculation places the strut tip near the front spar of the wing. Hence,
        it should benefit aerostatic and maybe aeroelastic behavior as it helps the wing
        to wash out.

        :Source: Discussion at DLR-LY
        '''
        xRoot_wing = self.parent.aircraft.wing.xRoot.getValue()
        cRoot_wing = self.parent.aircraft.wing.cRoot.getValue()
        phiLE_wing = self.parent.aircraft.wing.phiLE.getValue()
        span_wing = self.parent.aircraft.wing.span.getValue()

        cRoot = self.parent.cRoot.getValue()
        etaStrut = self.parent.etaStrut.getValue()
        depth = self.parent.depth.getValue()
        dfus = self.parent.aircraft.fuselage.dfus.getValue()


        # Go to the root position of the wing.
        # Move outwards along the leading edge
        # The front spar of the wing and and front spar of the strut shall meet
        # The front spar of the wing is always located at 10% of the root chord of the wing behind the leading edge
        # The strut spar is located at 30% of the profile as this is the location of the highest thickness.
        if 0.1 * cRoot_wing < 0.3 *cRoot:
            self.log.warn('VAMPzero STRUT: The leading edge of the strut exceeds the leading edge of the wing!')
            self.log.warn('VAMPzero STRUT: Decrease strut depth or adept spar positions.')
        loc = xRoot_wing + tan(phiLE_wing*rad) * span_wing/2. * (etaStrut-dfus/span_wing) + 0.1 * cRoot_wing - 0.3 *cRoot
        return self.setValueCalc(loc)
Esempio n. 13
0
    def calc(self):
        '''
        Calculates the time for the descent segment
        
        :Source: adapted from DLR-LY-IL Performance Tool, J. Fuchte, 2011
        '''
        #T is the indice for top, b for bottom! 
        altT = self.parent.atmosphere.hCR.getValue()
        altB = self.parent.atmosphere.hFL1500.getValue()

        sigmaT = self.parent.atmosphere.sigmaCR.getValue()
        sigmaB = self.parent.atmosphere.sigmaFL1500.getValue()

        IAS = self.parent.IASDESCENT.getValue()
        gamma = self.parent.gammaDESCENT.getValue()

        tasT = IAS * sigmaT
        tasB = IAS * sigmaB

        if sin(gamma * rad) != 0. and (tasT + tasB / 2.) != 0.:
            time = (altT - altB) * tan((90 - gamma) * rad) / ((tasT + tasB / 2.))

            return self.setValueCalc(time)

            ###################################################################################################
            #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
            ###################################################################################################
Esempio n. 14
0
    def calc(self):
        '''
        Calculates the x-position of the landing gear with respekt to the eta- and xsi-coordinate of the wing.
        '''    
        span = self.parent.aircraft.wing.span.getValue()
        xRoot = self.parent.aircraft.wing.xRoot.getValue()
        cRoot = self.parent.aircraft.wing.cRoot.getValue()
        cTip = self.parent.aircraft.wing.cTip.getValue()
        phiLE = self.parent.aircraft.wing.phiLE.getValue()
        etaLG = self.parent.eta.getValue()
        xsiLG = self.parent.xsi.getValue()
        
        xLG = xRoot + span/2 * tan(phiLE*rad) * etaLG + xsiLG * (span/2 * tan(phiLE*rad) * (1-etaLG) + cTip - (span/2 * tan(phiLE*rad) + cTip - cRoot) * (1-etaLG))     

        return self.setValueCalc(xLG)
###################################################################################################
#EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
###################################################################################################
 def test_tan_cc (self):
     src_data = [complex(i,i+1) for i in range(-5, 5, 2)]
     expected_result = tuple(cmath.tan(i) for i in src_data)
     src = gr.vector_source_c(src_data)
     op = gr.transcendental('tan', 'complex_float')
     snk = gr.vector_sink_c()
     self.tb.connect(src, op, snk)
     self.tb.run()
     result = snk.data()
     self.assertComplexTuplesAlmostEqual(expected_result, result, places=5)
Esempio n. 16
0
def tan(*args, **kw):
    arg0 = args[0]
    if isinstance(arg0, (int, float, long)):
        return _math.tan(*args,**kw)
    elif isinstance(arg0, complex):
        return _cmath.tan(*args,**kw)
    elif isinstance(arg0, _sympy.Basic):
        return _sympy.tan(*args,**kw)
    else:
        return _numpy.tan(*args,**kw)
Esempio n. 17
0
    def calc(self):
        '''
        Calculates the vertical tailplane's x location (MAC)
        '''
        yMAC = self.parent.yMAC.getValue()
        phi = self.parent.phiLE.getValue()
        xRoot = self.parent.xRoot.getValue()

        return self.setValueCalc(xRoot + tan(phi * rad) * yMAC )
        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 18
0
def test_complex_functions():
    for x in (list(range(10)) + list(range(-10,0))):
        for y in (list(range(10)) + list(range(-10,0))):
            z = complex(x, y)/4.3 + 0.01j
            assert exp(mpc(z)).ae(cmath.exp(z))
            assert log(mpc(z)).ae(cmath.log(z))
            assert cos(mpc(z)).ae(cmath.cos(z))
            assert sin(mpc(z)).ae(cmath.sin(z))
            assert tan(mpc(z)).ae(cmath.tan(z))
            assert sinh(mpc(z)).ae(cmath.sinh(z))
            assert cosh(mpc(z)).ae(cmath.cosh(z))
            assert tanh(mpc(z)).ae(cmath.tanh(z))
Esempio n. 19
0
 def _n_Ztotal(self, Omega, j0, c10):
     fc = self.fc
     z_step = 1.0/self.channels
     phi = [-j - 1j*Omega for j in j0]
     psi = cmath.sqrt(-1j*Omega/fc.express["nD_d"])
     nlJfix = fc.express["lJfix"]/fc.express["j_ref"]
     lbmupsi = self.fc.express["nl_d"]*self.fc.express["mu"]*psi
     sqrtphi = [cmath.sqrt(phii) for phii in phi]
     sinsqrtphi = [cmath.sin(s) for s in sqrtphi]
     sinlbmupsi = cmath.sin(lbmupsi)
     coslbmupsi = cmath.cos(lbmupsi)
     tanlbmupsi = cmath.tan(lbmupsi)
     y_v = [0.0]*(self.channels + 1)
     def function_rhs_ch(k):
         # all expressions below found in maxima:
         ABcommon = fc.express["nD_d"]*fc.express["mu"]*sinsqrtphi[k]*sqrtphi[k]*psi/(j0[k]*sinsqrtphi[k]*sqrtphi[k]*sinlbmupsi +
                 c10[k]*fc.express["nD_d"]*fc.express["mu"]*phi[k]*psi*coslbmupsi)
         A = c10[k]*phi[k]*ABcommon
         B = -j0[k]*ABcommon/coslbmupsi+fc.express["nD_d"]*fc.express["mu"]*psi*tanlbmupsi
         return (A/nlJfix, (B - 1j*fc.express["xi2epsilon2"]*Omega)/nlJfix)
     c11peta = [0.0]*(self.channels + 1)
     # TODO: upload maxima script
     # found in maxima:
     c11peta[0] = (sinsqrtphi[0]*sqrtphi[0]*c10[0]*phi[0])/(j0[0]*sinsqrtphi[0]*sqrtphi[0] +
             c10[0]*fc.express["nD_d"]*fc.express["mu"]*phi[0]*psi/tanlbmupsi)
     Zloc = [0.0]*(self.channels + 1)
     # found in maxima:
     denominator = sinsqrtphi[0]*sqrtphi[0]*((c10[0]*phi[0])/(c11peta[0]*j0[0]) - 1.0)
     if denominator == 0.0:
         denominator = eff_zero
     Zloc[0] = -1.0 / denominator + self._n_Zccl(j0[0], sqrtphi[0])
     invZtotal = 1.0/Zloc[0]
     for i in xrange(1, self.channels + 1):
         if self.num_method == 1: # Runge--Kutta method
             y_v[i] = RK_step(function_rhs_ch, (i-1)*2, y_v[i-1], z_step)
             ii = i*2
         else: # finite-difference method
             coef = function_rhs_ch(i)
             y_v[i] = (y_v[i-1] + coef[0]*z_step)/(1.0 - z_step*coef[1])
             ii = i
         # all expressions below found in maxima:
         c11peta[i] = y_v[i]/coslbmupsi - (sinsqrtphi[ii]*sqrtphi[ii]*(y_v[i]*j0[ii]/coslbmupsi -
                 c10[ii]*phi[ii]))/(j0[ii]*sinsqrtphi[ii]*sqrtphi[ii] +
                 c10[ii]*fc.express["nD_d"]*fc.express["mu"]*phi[ii]*psi/tanlbmupsi)
         denominator = sinsqrtphi[ii]*sqrtphi[ii]*((c10[ii]*phi[ii])/(c11peta[i]*j0[ii]) - 1.0)
         if denominator == 0.0:
             denominator = eff_zero
         Zloc[i] = -1.0 / denominator + self._n_Zccl(j0[ii], sqrtphi[ii])
         invZtotal += 1.0/Zloc[i]
     invZtotal = invZtotal*z_step - (1.0/Zloc[0]+1.0/Zloc[-1])*z_step/2.0
     self.y_v = y_v
     self.Zloc_v = Zloc
     return 1.0/invZtotal
Esempio n. 20
0
    def calc(self):
        """
        Calculates the trailing edge sweep angle from leading edge angle, semispan and root and tip Chord
        """
        cRoot = self.parent.cRoot.getValue()
        phiLE = self.parent.phiLE.getValue()
        cTip = self.parent.cTip.getValue()
        b2 = self.parent.span.getValue() / 2.0

        x1 = (tan(phiLE * rad) * b2 + cTip) - cRoot

        return self.setValueCalc(atan(x1 / b2) / rad)
Esempio n. 21
0
    def calc(self):
        '''
        Calculates the value for the x Position of the tip section
        @Source: boeh_da
        @Discipline: Geometry/CPACS
        @Method: Parameter 
        '''
        span = self.parent.span.getValue()
        xRoot = self.parent.xRoot.getValue()
        phiLE = self.parent.phiLE.getValue()

        return self.setValueCalc(xRoot + span / 2. * tan(phiLE * rad))
Esempio n. 22
0
    def calcAirbus(self):
        '''
        Calculates the aspectRatio from the wings quarterchord sweep
        High aspectRatio and high sweep can lead to tip stall
        
        :Source: Entwurfskolloquium, T. Engelbrecht, Airbus FPO, 2009, p. 8
        :Source: changed values via Civil Jet Aircraft Design, L.R. Jenkinson and P. Simpkin and D. Rhodes, Butterworth Heinemann, 1999,  database
        '''
        self.setDeviation(0.1599) # needs to be set by the calc method when called for later use (deviation depends on the calc method)        

        phi25 = self.parent.phi25.getValue()
        
        return self.setValueCalc(4.14 / (0.86 * tan(phi25 * rad)))
Esempio n. 23
0
    def calcTtail(self):
        '''
        Calculates the X position of the horizontal tail from the  xTip location of VTP

        '''
        xRootVTP = self.parent.aircraft.vtp.xRoot.getValue()
        phiLEVTP = self.parent.aircraft.vtp.phiLE.getValue()
        spanVTP  = self.parent.aircraft.vtp.span.getValue()
        return self.setValueCalc((xRootVTP + spanVTP * tan(phiLEVTP * pi / 180.) ))


        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 24
0
 def tan(self,command_position,args):
     try:
         if type(self.stack[command_position+1])==complex:
             value=cmath.tan(self.stack[command_position+1])
         else:
             value=math.tan(self.stack[command_position+1])
         self.stack.pop(command_position+1)
         self.stack[command_position]=value
         return command_position
     except:
         self.statstrings.append("Bad tangent attempted, ignoring command")
         self.error=True
         self.stack.pop(command_position)
         return command_position
Esempio n. 25
0
    def calc(self):
        '''
        @Source: Dorbath p. 34
        @Discipline: Geometry/CPACS
        @Method: Parameter
        '''
        dihedral = self.parent.dihedral.getValue()
        yFuselage = self.parent.yFuselage.getValue()
        zFuselage = self.parent.zFuselage.getValue()
        span = self.parent.span.getValue() / 2.

        return self.setValueCalc(tan(dihedral * rad) * (span - yFuselage) + zFuselage)
        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 26
0
    def calc(self):
        '''
        Calculates the coordinates of the horizontal tailplane's center of gravity location
        
        :Source: Civil Jet Aircraft Design, L.R. Jenkinson and P. Simpkin and D. Rhodes, Butterworth Heinemann, 1999,  p. 148
        '''

        span = self.parent.span.getValue()
        cRoot = self.parent.cRoot.getValue()
        phiLE = self.parent.phiLE.getValue()
        phiTE = self.parent.phiTE.getValue()
        xRoot = self.parent.xRoot.getValue()

        bCG = span * 0.38 / 2.       # Spanwise Location of the CoG
        cCG = cRoot - bCG * tan(phiLE * rad) + bCG * tan(phiTE * rad)

        #Calculated the X Location of the center of Gravity
        xCG = xRoot + tan(phiTE * rad) * bCG + 0.42 * cCG

        return self.setValueCalc(xCG)

        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 27
0
    def calc(self):
        '''
        Calculates the trailing edge sweep angle from leading edge angle, semispan and root and tip Chord
        '''
        cRoot = self.parent.cRoot.getValue()
        phiLE = self.parent.phiLE.getValue()
        cTip = self.parent.cTip.getValue()
        b2 = self.parent.span.getValue()

        x1 = (tan(phiLE * rad) * b2 + cTip) - cRoot

        return self.setValueCalc(90. - atan(b2 / x1) / rad)
        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 28
0
def tan(x):
    """
    Return the tangent of x, in radians.
    """
    if isinstance(x,ADF):
        ad_funcs = list(map(to_auto_diff,[x]))

        x = ad_funcs[0].x
        
        ########################################
        # Nominal value of the constructed ADF:
        f = tan(x)
        
        ########################################

        variables = ad_funcs[0]._get_variables(ad_funcs)
        
        if not variables or isinstance(f, bool):
            return f

        ########################################

        # Calculation of the derivatives with respect to the arguments
        # of f (ad_funcs):

        lc_wrt_args = [1./(cos(x))**2]
        qc_wrt_args = [2*sin(x)/(cos(x))**3]
        cp_wrt_args = 0.0

        ########################################
        # Calculation of the derivative of f with respect to all the
        # variables (Variable) involved.

        lc_wrt_vars,qc_wrt_vars,cp_wrt_vars = _apply_chain_rule(
                                    ad_funcs,variables,lc_wrt_args,qc_wrt_args,
                                    cp_wrt_args)
                                    
        # The function now returns an ADF object:
        return ADF(f, lc_wrt_vars, qc_wrt_vars, cp_wrt_vars)
    else:
#        try: # pythonic: fails gracefully when x is not an array-like object
#            return [tan(xi) for xi in x]
#        except TypeError:
        if x.imag:
            return cmath.tan(x)
        else:
            return math.tan(x.real)
Esempio n. 29
0
    def calc(self):
        '''
        Calculates the leading edge sweep from quarter sweep, aspect ratio and taper ratio
        
        :Source: Aircraft Design: A Conceptual Approach, D. P. Raymer, AIAA Education Series, 1992, Second Edition, p.48 
        '''
        self.setDeviation(0.0335) # needs to be set by the calc method when called for later use (deviation depends on the calc method)
        
        aspectRatio = self.parent.aspectRatio.getValue()
        phi25 = self.parent.phi25.getValue()
        taperRatio = self.parent.taperRatio.getValue()

        return self.setValueCalc(atan(tan(phi25 * rad) + ((1 - taperRatio) / (aspectRatio * (1 + taperRatio)))) / rad)

        ###################################################################################################
        #EOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFEOFE#
        ###################################################################################################
Esempio n. 30
0
    def calc(self):
        """
        :Source: Patrick Goden, Technische Universitaet Hamburg Harburg, Master Thesis
        :Source: FAR 25.335: Design airspeeds, FAR 25.253 High-speed characteristics)
        """
        aspectRatioHPT = self.parent.aspectRatio.getValue()
        phi50HTP = self.parent.phi50.getValue()
        machCR = self.parent.aircraft.machCR.getValue()

        delta_MMO = 0.05  # margin to Maximum Operating Mach Number (MMO) may not less than 0.05
        machCR_MMO = machCR + delta_MMO

        CLalphaHTP = (2 * pi * aspectRatioHPT) / (
            2 + (aspectRatioHPT ** 2 * (tan(phi50HTP * pi / 180) ** 2 + 1 - machCR_MMO ** 2) + 4) ** 0.5
        )

        return self.setValueCalc(CLalphaHTP)
Esempio n. 31
0
 def __new__(cls, argument):
     if isinstance(argument, (RealValue, Zero)):
         return FloatValue(math.tan(float(argument)))
     if isinstance(argument, (ComplexValue)):
         return ComplexValue(cmath.tan(complex(argument)))
     return MathFunction.__new__(cls)
Esempio n. 32
0
 def area(self):
     angle = radians(180 / 5)
     return self.size * self.size * 5 / (4 * tan(angle))
Esempio n. 33
0
def p_expression_cot(t):
    'expression : COT expression'
    t[0] = 1/cmath.tan(t[2])
Esempio n. 34
0
def svgEndStyle():
	"""Finish group of styled svg items."""
	svgTag('g', -1)

# Actual output code
total_size = 2*(scale+margin)
svgHeader(total_size,total_size)

svgStyle('fill="none" stroke="black" stroke-dasharray="2,4"')
svgTag('circle cx="%d" cy="%d" r="%s"' % (scale+margin,scale+margin,scale))
svgEndStyle()

svgStyle('fill="none" stroke="blue"')

def circulate(pos):
    theta = 2*pi*pos/len(chords)
    x = int(abs(scale+margin+scale*cos(theta)))
    y = int(abs(scale+margin+scale*sin(theta)))
    return x,y

for chord in firstpos.keys():
    px,py = circulate(firstpos[chord])
    qx,qy = circulate(lastpos[chord])
    b = 0
    if firstpos[chord] <= 0.25 * len(chords) and lastpos[chord] >= 0.75* len(chords): b = 1
    r = int(abs(scale*tan(pi*(firstpos[chord]-lastpos[chord])/len(chords))))
    svgTag('path d="M%d,%d A%d,%d 0 0,%d %d,%d"' % (px,py,r,r,b,qx,qy))

svgEndStyle()
svgTrailer()
Esempio n. 35
0
    def execute_pcode(z, code, const_tab):
        MAX_STACK: int32 = 1024
        stack = np.empty(MAX_STACK, dtype=complex64)

        sp: int32 = 0
        pc: int32 = 0
        cc: int8 = code[pc]
        zero: complex64 = 0 + 0j

        while cc != SEND:
            if cc == SPUSHC:
                stack[sp] = const_tab[code[pc + 1]]
                sp += 1
                pc += 1
            elif cc == SPUSHZ:
                stack[sp] = z
                sp += 1
            elif cc == SADD:
                sp -= 2
                stack[sp] += stack[sp + 1]
                sp += 1
            elif cc == SSUB:
                sp -= 2
                stack[sp] -= stack[sp + 1]
                sp += 1
            elif cc == SMUL:
                sp -= 2
                stack[sp] *= stack[sp + 1]
                sp += 1
            elif cc == SDIV:
                sp -= 2
                stack[sp] = stack[sp] / stack[
                    sp + 1] if stack[sp + 1] != zero and isfinite(
                        stack[sp + 1]) and isfinite(stack[sp]) else zero
                sp += 1

            elif cc == SPOW:
                sp -= 2
                stack[sp] = stack[sp]**stack[sp + 1]
                sp += 1

            elif cc == SNEG:
                stack[sp - 1] = -stack[sp - 1]
            elif cc == SSIN:
                stack[sp - 1] = sin(stack[sp - 1])
            elif cc == SCOS:
                stack[sp - 1] = cos(stack[sp - 1])
            elif cc == STAN:
                stack[sp - 1] = tan(stack[sp - 1])
            elif cc == SASIN:
                stack[sp - 1] = asin(stack[sp - 1])
            elif cc == SACOS:
                stack[sp - 1] = acos(stack[sp - 1])
            elif cc == SATAN:
                stack[sp - 1] = atan(stack[sp - 1])
            elif cc == SLOG:
                stack[sp -
                      1] = log(stack[sp -
                                     1]) if stack[sp - 1] != zero else zero
            elif cc == SEXP:
                stack[sp - 1] = exp(stack[sp - 1])

            pc += 1
            cc = code[pc]

        return stack[0]
Esempio n. 36
0
width = 7.0
frames = 100

for frame in range(frames):
    img = Image.new('RGB', (3 * size / 2, size),
                    "black")  # create a new black image
    pixels = img.load()  # create the pixel map
    gamma = 0.5 - (0.5 * math.cos(frame * 3 * math.pi / frames))

    for i in range(img.size[0]):  # for every pixel:
        for j in range(img.size[1]):
            x = 1.5 * ((width * i / img.size[0]) - (width / 2))
            y = (width * j / img.size[1]) - (width / 4)
            z = y + (1.0j * x)
            if frame < frames / 3:
                z = (gamma * cmath.tan(z)) + ((1 - gamma) * z)
            elif frame < 2 * frames / 3:
                z = (gamma * cmath.tan(z)) + ((1 - gamma) * cmath.exp(z))
            else:
                z = (gamma * z) + ((1 - gamma) * cmath.exp(z))
            H = 0.5 + (cmath.phase(z) / (2 * math.pi))
            S = math.pow(np.abs(math.sin(2 * math.pi * np.abs(z))), 0.5)
            V = math.pow(
                np.abs(
                    math.sin(z.real * 2 * math.pi) *
                    math.sin(z.imag * 2 * math.pi)), 0.25)
            color = list(colorsys.hsv_to_rgb(H, S, V))
            for k in range(3):
                color[k] = int(255 * color[k])
            pixels[i, j] = tuple(color)  # set the colour accordingly
Esempio n. 37
0
def tan(x):
    if is_complex(x):
        return cmath.tan(x)
    return math.tan(x)
Esempio n. 38
0
    Power and Log Functions
        The cmath() module provides some useful functions for logarithmic
        and power operations.
"""
c = 1+2j
print('e^c = ', cmath.exp(c))
print('log2(c) = ', cmath.log(c,2))
print('log10(c) = ', cmath.log10(c))
print('sqrt(c) = ', cmath.sqrt(c))

"""
    Trigonometric Functions
"""
c = 2+4j
print('arc sine value:\n ', cmath.asin(c))
print('arc cosine value:\n ', cmath.acos(c))
print('arc tangent value:\n ', cmath.atan(c))
print('sine value:\n ', cmath.sin(c))
print('cosine value:\n ', cmath.cos(c))
print('tangent value:\n ', cmath.tan(c))

"""
    Hyperbolic Functions
"""
c = 2+4j
print('Inverse hyperbolic sine value: \n', cmath.asinh(c))
print('Inverse hyperbolic cosine value: \n', cmath.acosh(c))
print('Inverse hyperbolic tangent value: \n', cmath.atanh(c))
print('Inverse sine value: \n', cmath.sinh(c))
print('Inverse cosine value: \n', cmath.cosh(c))
print('Inverse tangent value: \n', cmath.tanh(c))
Esempio n. 39
0
# power and log functions
c = 2 + 2j
print('e^c =', cmath.exp(c))
print('log2(c) =', cmath.log(c, 2))
print('log10(c) =', cmath.log10(c))
print('sqrt(c) =', cmath.sqrt(c))

# trigonometric functions
c = 2 + 2j
print('arc sine =', cmath.asin(c))
print('arc cosine =', cmath.acos(c))
print('arc tangent =', cmath.atan(c))

print('sine =', cmath.sin(c))
print('cosine =', cmath.cos(c))
print('tangent =', cmath.tan(c))

# hyperbolic functions
c = 2 + 2j
print('inverse hyperbolic sine =', cmath.asinh(c))
print('inverse hyperbolic cosine =', cmath.acosh(c))
print('inverse hyperbolic tangent =', cmath.atanh(c))

print('hyperbolic sine =', cmath.sinh(c))
print('hyperbolic cosine =', cmath.cosh(c))
print('hyperbolic tangent =', cmath.tanh(c))

# classification functions
print(cmath.isfinite(2 + 2j))  # True
print(cmath.isfinite(cmath.inf + 2j))  # False
Esempio n. 40
0
a = 1 + 1j          #Be sure to have a coefficient in front of 'j'!
b = complex(2,2)    #Defines a complex number '2 + 2i'

#Addition, subtraction, multiplication and division works without cmath

real_coefficient = a.real
complex_coefficient = a.imag

polar_angle = cmath.phase(a)
polar_radius = abs(a)

rectangular_to_polar = cmath.polar(a)
polar_to_rectangular = cmath.rect(1, math.pi)

e_to_the_a = cmath.exp(a)        #Takes 'e' to the power of 'a'
square_root = cmath.sqrt(a)

logarithm = cmath.log(a,b)       #Logarithm of 'a' with base 'n'
natural_logarithm = cmath.log(a) #Leaving out the 'n' makes this a natural logarithm
log10 = cmath.log10(a)           #Logarithm base 10

sine = cmath.sin(a)
cosine = cmath.cos(a)
tangent = cmath.tan(a)

arcsine = cmath.asin(a)
arccosine = cmath.acos(a)
arctangent = cmath.atan(a)

check_for_infinite_value = cmath.isinf(a)
Esempio n. 41
0
def tan_usecase(x):
    return cmath.tan(x)
Esempio n. 42
0
def TAN(df, price='Close'):
    """
    Tangent
    Returns: list of floats = jhta.TAN(df, price='Close')
    """
    return [cmath.tan(df[price][i]).real for i in range(len(df[price]))]
Esempio n. 43
0
 def tan(self):
     comp_value = cmath.tan(self.comp_value)
     secSquared = (2 / (cmath.cos(2 * self.comp_value)) + 1)
     comp_unc = self.comp_unc * secSquared  # if y = tan^2(x) than U(y) = -U(x)sec^2(x)
     return Ucom(comp_value, comp_unc, self.name, self.dep)
Esempio n. 44
0
assert abs(radians(30) - x) < 1e-14
assert abs(pi() - math.pi) < 1e-14

assert abs(atan2(sqrt(mpq(3, 4)), mpq(1, 2)) - radians(60)) < 1e-20
assert abs(atan2(sqrt(mpq(3, 4)), -mpq(1, 2)) - radians(120)) < 1e-20
assert abs(atan2(-sqrt(mpq(3, 4)), mpq(1, 2)) - radians(-60)) < 1e-20

#------------------------------------------------------------------------------
# Trig functions - complex version

# Pick a value that gives distinctly different results for sin, cos , and tan.
x = 1j * math.pi / 6

assert abs(sin(x) - cmath.sin(x)) < 1e-14
assert abs(cos(x) - cmath.cos(x)) < 1e-14
assert abs(tan(x) - cmath.tan(x)) < 1e-14

assert abs(asin(sin(x)) - x) < 1e-14
assert abs(acos(cos(x)) - x) < 1e-14
assert abs(atan(tan(x)) - x) < 1e-14

assert abs(cis(x) - (cos(x) + 1j * sin(x))) < 1e-14

#------------------------------------------------------------------------------
# Exponential and log functions - real version

x = 0.5

assert abs(sqrt(x) - math.sqrt(x)) < 1e-14

assert abs(log(x) - math.log(x)) < 1e-14
Esempio n. 45
0
 def test_tan(self):
     self.assertAlmostEqual(complex(-0.000187346, 0.999356),
                            cmath.tan(complex(3, 4)))
Esempio n. 46
0
width = 11.0
frames = 100

for frame in range(frames):
    img = Image.new('RGB', (3 * size / 2, size),
                    "black")  # create a new black image
    pixels = img.load()  # create the pixel map
    gamma = 0.5 - (0.5 * math.cos(frame * 2 * math.pi / frames))

    for i in range(img.size[0]):  # for every pixel:
        for j in range(img.size[1]):
            x = 1.5 * ((width * i / img.size[0]) - (width / 2))
            y = (width * j / img.size[1]) - (width / 2)
            z = y + (1.0j * x)
            if frame < frames / 2:
                z = z + (gamma * (cmath.tan(z) + cmath.exp(z * gamma)))
            else:
                z = z + (gamma * (cmath.tan(gamma * z) + cmath.exp(z)))
            phase = cmath.phase(z)
            if phase < 0: phase = (2 * math.pi) + phase
            H = phase / (2 * math.pi)
            S = 1
            V = 0.75 - (0.25 * math.cos(np.abs(z) * 3 * math.pi))
            color = list(colorsys.hsv_to_rgb(H, S, V))
            for k in range(3):
                color[k] = int(255 * color[k])
            pixels[i, j] = tuple(color)  # set the colour accordingly

    #img.show()
    img.save("expintanout{:04}.png".format(frame))
Esempio n. 47
0
def tan(x):
    if isinstance(x, complex):
        return cmath.tan(x)
    else:
        return math.tan(x)
Esempio n. 48
0
                  (np.sin(fi) - np.sin(hi)) * pi * lap / la))**2
grN = -0.05 * np.max(I0)
grV = 1.1 * np.max(I0)

#def U(psi): return (((np.sin((np.sin(fi)-np.sin(psi))*pi*b/la)))/((np.sin(fi)-np.sin(psi))*pi*b/la))**2*(((np.sin((np.sin(fi)-np.sin(psi))*pi*Nr*lap/la)))/((np.sin(fi)-np.sin(psi))*pi*lap/la))**2

print("_______________________________________________")
print("Период решётки", round(lap * 10**6, 3), "мкм")
nr = 1
Q = 2 * pi * la * dmax / (nr * lap * np.cos(fi))  #эффективная толщина решётки

fi2 = cm.asin(n * np.sin(fi) /
              nv)  #расчёт угла распространения луча в основной среде
RperpTE = (((cm.sin(fi2 - fi))**2) / ((cm.sin(fi2 + fi))**2)
           )  #коэффициент отражения для параллельной поляризации (TE)
RparalTM = (((cm.tan(fi2 - fi))**2) / ((cm.tan(fi2 + fi))**2)
            )  #коэффициент отражения для перпендикулярной поляризации (TM)

#расчёт фазовых сдвигов для 10нм толщины материала (металла или сверхпроводника), формулы согласно дипломке
RMM = RmM[10]**(1 / 2)
RME = RmE[10]**(1 / 2)
RTM = abs(RparalTM)
RTE = abs(RperpTE)
eiE = RperpTE / RTE
eiM = RparalTM / RTM
E1 = np.arctan(eiE.imag / eiE.real)
M1 = np.arctan(eiM.imag / eiM.real)
print("Отражается TE", round(RTE * 100, 1), "%")
print("Отражается TM", round(RTM * 100, 1), "%")
YM = ((r12M + r23M * np.exp(1j * delta)) /
      (1 + r12M * r23M * np.exp(1j * delta)))**2
def b():
	#a=input()
	plt.plot([tan(x) for x in range(int(e.get()))])
	plt.show()
Esempio n. 50
0
 def y(a):
     return Cnb - Clb*Izz/Ixx*math.tan(a/RAD).real
Esempio n. 51
0
width = 7.0
frames = 160

for frame in range(frames):
    img = Image.new('RGB', (3 * size / 2, size),
                    "black")  # create a new black image
    pixels = img.load()  # create the pixel map
    gamma = 0.5 - (0.5 * math.cos(frame * 4 * math.pi / frames))

    for i in range(img.size[0]):  # for every pixel:
        for j in range(img.size[1]):
            x = 1.5 * ((width * i / img.size[0]) - (width / 2))
            y = (width * j / img.size[1]) - (width / 2)
            z = y + (1.0j * x)
            if frame < frames / 4:
                z = (gamma * cmath.tan(z)) + ((1 - gamma) * z)
            elif frame < frames / 2:
                if z == 0: continue
                z = (gamma * cmath.tan(z)) + ((1 - gamma) * cmath.log(z))
            elif frame < 3 * frames / 4:
                if z == 0: continue
                z = (gamma * cmath.exp(z)) + ((1 - gamma) * cmath.log(z))
            else:
                z = (gamma * cmath.exp(z)) + ((1 - gamma) * z)
            H = 0.5 + (cmath.phase(z) / (2 * math.pi))
            S = math.pow(np.abs(math.sin(2 * math.pi * np.abs(z))), 0.5)
            V = math.pow(
                np.abs(
                    math.sin(z.real * 2 * math.pi) *
                    math.sin(z.imag * 2 * math.pi)), 0.25)
            V = max(V, 1 - S)
def transmissionplanecalculation(ports, width, plane_height, frequencyBand, rel_permittivity, rel_permittivity_frequency_extraction, metal_conductivity, dielectric_conductivity, vdd_thickness, loss_tangent, rel_permeability = 1):
    '''
    requires consistent units in input
    
    Assumes port dimensions are much smaller than smallest wavelength
    -->Requires checker, otherwise add sync terms to z(w)
    
    Based on "Characterization of Power Distribution Networks", Novak, Miller
    '''
    import cmath, os
    
    permeability = 4.0 * pi() * 1E-7 
    permittivity = 8.854187817E-12
    speed_light = 299792458
    
    limits = (1,12)
    
    # fmax = frequencyBand[-1]
    # print fmax
    # b = 1.0
    # a = 1.0
    # m_limit = int( fmax * 2.0 * b * rel_permittivity ** (1 / 2.0) / speed_light ) #Missing a factor
    # n_limit = int( fmax * 2.0 * a * rel_permittivity ** (1 / 2.0) / speed_light ) #Missing a factor
    m_limit = 20
    n_limit = 20
    # print m_limit, n_limit
    prmtvyFile = open(os.path.join(os.path.dirname(os.path.realpath(__file__)),'permittivity_plot.csv'),'w')
    print prmtvyFile
    
    print "\n" 
    print "Freq\t\tPort00(R)\t\tPort00(I)\t\tPort10(R)\t\tPort10(I)\t\tPort11(R)\t\tPort11(I)"
    for frequency in frequencyBand:
        
        rad_freq = frequency * 2 * pi()

        skinDepth = ( 2 / ( rad_freq * metal_conductivity * rel_permeability * permeability ) )**(1 / 2.0)

        ksubm = (1.0 - 1.0j) / skinDepth
        
        zedsubs = ( 2 * ksubm / metal_conductivity ) / ( cmath.tan(ksubm * vdd_thickness) )

        zedOmega = zedsubs + 1.0j * rad_freq * rel_permeability * permeability * plane_height
        
        #This is not calculating the limits and loss_tangent needs to be adjusted as well
        complex_calculated_Er = complex_rel_permittivity(frequency, rel_permittivity, rel_permittivity_frequency_extraction, limits, loss_tangent)
   
        whyOmega = ( 1 / plane_height ) * ( dielectric_conductivity + 1.0j * rad_freq * permittivity * complex_calculated_Er )

        prmtvyFile.write("{:2E},{:2E},{:2E},\n".format(frequency,complex_calculated_Er.real,complex_calculated_Er.imag))

        
        print "\n{:2E}\t".format(frequency),
        for port in range(0,len(ports)):
            for txport in range(port,len(ports)):
                # print "Port({},{})\t".format(port,txport),
                z_sum = 0.0 + 0.0j
                for m in range(0,m_limit + 1):
                    for n in range(0,n_limit + 1):
                        z_index = z_sum + cosignFunc(ports[port], ports[txport], width, m,n) * \
                            ( (xi(m,n) ** 2.0 ) / ( width[0] * width[1] * ( kaysubn(m,width[0])**2.0 + kaysubn(n,width[1])**2.0 + zedOmega * whyOmega ) ) )
                            
                        z_sum = z_index
                        
                # print zedOmega * z_sum, "\t",
                print "{:2E}\t{:2E}\t".format((zedOmega * z_sum).real,(zedOmega * z_sum).imag),
                
    prmtvyFile.close()
    return
Esempio n. 53
0
import cmath

print(
    "N-GON ROOT CALCULATOR - by dreamVoyager \n A generalized root formula for the length of the side of an "
    "n-sided regular "
    "polygon with area x. \n Also works with complex numbers.")
while True:
    try:
        x = complex(input(">Input 1 (n-gon):").replace("i", "j"))
        y = complex(input(">Input 2 (Area):").replace("i", "j"))
    except ValueError:
        print("Invalid input.")
        continue
    top = 4 * complex(y)
    try:
        tang = cmath.tan(cmath.pi / complex(x))
    except ZeroDivisionError:
        print("Error: Division by 0.")
        continue
    bot = complex(x) / complex(tang)
    fraction = complex(top) / complex(bot)
    shaperoot = cmath.sqrt(complex(fraction))
    z = str(x).replace("j", "i")
    w = str(y).replace("j", "i")
    if 0 <= shaperoot.imag:
        op = "+"
    else:
        op = "-"
    print(
        f"The {z}-gon root of {w} is {round(shaperoot.real, 10)}{op}{abs(round(shaperoot.imag, 10))}i"
    )
Esempio n. 54
0
 
 # exponents and logs
 'exp':   {'fix': 'prefix', 'arglen': (1,), 'func': cmath.exp},
 'ln':    {'fix': 'prefix', 'arglen': (1,), 'func': cmath.log},
 'log':   {'fix': 'prefix', 'arglen': (1, 2), 'func': log},
 'sqrt':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.sqrt},
 
 # trig
 'hypot': {'fix': 'prefix', 'arglen': None, 'func': math.hypot},
 
 'sin':   {'fix': 'prefix', 'arglen': (1,), 'func': cmath.sin},
 'cos':   {'fix': 'prefix', 'arglen': (1,), 'func': cmath.cos},
 'tan':   {'fix': 'prefix', 'arglen': (1,), 'func': cmath.tan},
 'csc':   {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: 1 / cmath.sin(x)},
 'sec':   {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: 1 / cmath.cos(x)},
 'cot':   {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: 1 / cmath.tan(x)},
 
 'sinh':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.sinh},
 'cosh':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.cosh},
 'tanh':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.tanh},
 
 'asin':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.asin},
 'acos':  {'fix': 'prefix', 'arglen': (1,), 'func': cmath.acos},
 'atan':  {'fix': 'prefix', 'arglen': (1, 2), 'func': atan},
 'acsc':  {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: cmath.asin(1 / x) if x != 0 else cmath.asin(math.inf)},
 'asec':  {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: cmath.acos(1 / x) if x != 0 else cmath.acos(math.inf)},
 'acot':  {'fix': 'prefix', 'arglen': (1,), 'func': lambda x: cmath.asin(1 / x) if x != 0 else cmath.atan(math.inf)},
 
 'asinh': {'fix': 'prefix', 'arglen': (1,), 'func': cmath.asinh},
 'acosh': {'fix': 'prefix', 'arglen': (1,), 'func': cmath.acosh},
 'atanh': {'fix': 'prefix', 'arglen': (1,), 'func': cmath.atanh},
Esempio n. 55
0
z = complex(x, y)
print(cmath.sin(z))

#2.cos()-This function returns the cos of complex number passed as a argument.
import cmath
x = 2.0
y = 1.0
z = complex(x, y)
print(cmath.cos(z))

#3.tan()- This function returns the tan of complex number passed as a argument.
import cmath
x = 1.0
y = 1.0
z = complex(x, y)
print(cmath.tan(z))

#Inverse Trigonometric functions.
#1.asin()- This function returns the arc sine of the complex number passed in as a argument.
import cmath
x = 1.0
y = 1.0
z = complex(x, y)
print(cmath.asin(z))

#2.acos()- This function returns the arc cosine of complex number passed in as a argument.
import cmath
x = 2.0
y = 1.0
z = complex(x, y)
print(cmath.acos(z))
Esempio n. 56
0
    def calcControl(self):
        '''
        Calculates the reference area for the VTP from the moment of equilibrium as a result of one engine failure (OEI). The VTP has to compensate the
        remaining thrust from the active engine and additional the drag from the inactive engine.
        
        :Source: Patrick Goden, Technische Universitaet Hamburg Harburg, Master Thesis
        '''
        wingrefArea = self.parent.aircraft.wing.refArea.getValue()
        rhoAP = self.parent.aircraft.atmosphere.rhoAP.getValue()
        aAP = self.parent.aircraft.atmosphere.aAP.getValue()
        lVT = self.parent.lVT.getValue()
        aspectRatioVPT = self.parent.aspectRatio.getValue()
        aspectRatio = self.parent.aircraft.wing.aspectRatio.getValue()
        oswald = self.parent.aircraft.wing.oswald.getValue()
        phi50VTP = self.parent.phi50.getValue()
        cD0 = self.parent.aircraft.cD0.getValue()
        dCDTO = self.parent.aircraft.wing.flap.dCDTO.getValue()
        dCDextendedLG = self.parent.aircraft.landingGear.dCDextendedLG.getValue(
        )
        nEngine = self.parent.aircraft.engine.nEngine.getValue()
        yEngine = self.parent.aircraft.engine.yEngine.getValue()
        mTOM = self.parent.aircraft.mTOM.getValue()
        cLTO = self.parent.aircraft.cLTO.getValue()
        refArea = self.parent.aircraft.wing.refArea.getValue()

        g = 9.81
        vs = sqrt(2 * mTOM * g / (rhoAP * cLTO * refArea))
        v1 = vs
        v2 = 1.2 * vs

        #m_TOW, posCoG_fuel_pay_nt,posCoG_fuel_pay_tn,posCoG_fuel,m_PAX,posCoGMIN_fuel_pay0, posCoGMIN_fuel_pay, posCoGMAX_fuel_pay0,posCoGMAX_fuel_pay,m_TOW_fuel_pay = self.parent.aircraft.posCoGMAX.massTable()
        x1 = self.parent.aircraft.sTOFL.x1

        machTO = v2 / aAP
        qTO = rhoAP / 2 * v2**2

        length_m_TOW_fuel_pay = len(
            self.parent.aircraft.posCoGMAX.m_TOW_fuel_pay)

        cLTO_var = np.zeros((length_m_TOW_fuel_pay, 1))
        cDTO_var = np.zeros((length_m_TOW_fuel_pay, 1))
        thrust_TO_var = np.zeros((length_m_TOW_fuel_pay, 1))
        beta_var = np.zeros((length_m_TOW_fuel_pay, 1))
        refAreaControl_var = np.zeros((length_m_TOW_fuel_pay, 1))

        Phi = 5  # in [deg], maximum value according to the regulation of FAA
        zeta = 25  # in [deg], maximum value
        c_Q_beta_profile = 6.1416  # in [1/rad], for the VTP profile
        C_Q_zeta = 1.0616  # in [1/rad]

        kappaVTP = c_Q_beta_profile * (1 - machTO**2) / (2 * pi)
        kappaVTP = kappaVTP.real
        C_Q_beta = (2 * pi * aspectRatioVPT) / (
            2 + sqrt(aspectRatioVPT**2 / kappaVTP**2 *
                     (tan(phi50VTP * pi / 180)**2 + 1 - machTO**2) + 4)
        )  #in [1/rad], for the VTP
        C_Q_beta = C_Q_beta.real

        mu = 0.025

        cLTO_var = (2 * self.parent.aircraft.posCoGMAX.m_TOW_fuel_pay *
                    9.81) / (rhoAP * v2**2 * wingrefArea)
        cDTO_var = cD0 + dCDTO + dCDextendedLG + cLTO_var**2 / (
            pi * aspectRatio * oswald)
        beta_var = -cLTO_var / C_Q_beta * Phi
        beta_var = beta_var.real
        #Assumption: Thrust equals roll drag, aerodynamic drag and acceleration to v1 in x1
        #additional drag from the inoperative engine (factor 1.25 for windmilling fan with big BPR), estimation by Scholz, Dieter:
        #Skript zur Vorlesung Flugzeugentwurf, Hochschule fuer Angewandte Wissenschaften Hamburg, 1999
        thrust_TO_var = 1.25 * (
            mu * self.parent.aircraft.posCoGMAX.m_TOW_fuel_pay * 9.81 +
            rhoAP / 2 * v1**2 * cDTO_var * wingrefArea +
            self.parent.aircraft.posCoGMAX.m_TOW_fuel_pay * v1**2 /
            (2 * x1)) / nEngine
        refAreaControl_var = (thrust_TO_var * yEngine) / (
            qTO * lVT *
            (-C_Q_beta * beta_var * pi / 180 + C_Q_zeta * zeta * pi / 180))

        refAreaControl = refAreaControl_var.max()
        return refAreaControl
    if a[0] == '-':
        variables[a[1:]] = -1.0 * (variables[b] if b in variables else b)
    else:
        variables['-' + a] = -1.0 * (variables[b] if b in variables else b)
    return b


OPERATIONS = {
    '+': lambda a, b: a + b,
    '-': lambda a, b: b - a,
    '/': lambda a, b: b / a,
    '*': lambda a, b: a * b,
    '**': lambda a, b: b**a,
    'sin': lambda a: cmath.sin(a),
    'cos': lambda a: cmath.cos(a),
    'tan': lambda a: cmath.tan(a),
    'atan': lambda a: cmath.atan(a),
    'asin': lambda a: cmath.asin(a),
    'acos': lambda a: cmath.acos(a),
    'sqrt': lambda a: a**0.5,
    '%': lambda a, b: b % a,
    'ln': lambda a: cmath.log(a),
    'log': lambda a, b: cmath.log(b, a),
    'rad': lambda a: math.radians(a.real),
    'deg': lambda a: math.degrees(a.real),
    'arg': lambda a: cmath.phase(a),
    'abs': lambda a: (a.real * a.real + a.imag * a.imag)**0.5,
    'Re': lambda a: a.real,
    'Im': lambda a: a.imag,
    '=': variableAssign
}
Esempio n. 58
0
 def cot(self):
     comp_value = 1 / cmath.tan(self.comp_value)
     csecSquared = -(2 / (1 - cmath.cos(2 * self.comp_value)))
     comp_unc = self.comp_unc * csecSquared  # if y = cot^2(x) than U(y) = -U(x) csc^2(x)
     return Ucom(comp_value, comp_unc, self.name, self.dep)
Esempio n. 59
0
def p_expression_tan(t):
    'expression : TAN expression'
    t[0] = cmath.tan(t[2])
Esempio n. 60
0
def tan(x):
    return cmath.tan(x)