{"user_id": user_obj["id"], "user": user_obj, "success": False, "failure": False, "timeout": False, "stopped": False } ], "recipients": {}, "attachments": [], "include_logs": True, "report_attachments": [], "success_recipients": [], "failure_recipients": [], "timeout_recipients": [], "stopped_recipients": [] } new_job = cml.create_job(create_jobs_params) new_job_id = new_job["id"] print("Created new job with jobid", new_job_id) ## # Start the Training Job job_env_params = {} start_job_params = {"environment": job_env_params} job_id = new_job_id job_status = cml.start_job(job_id, start_job_params) print("Training Job started") # Stop a job #job_dict = cml.start_job(job_id, start_job_params) #cml.stop_job(job_id, start_job_params)
"failure": False, "timeout": False, "stopped": False }], "recipients": {}, "attachments": [], "include_logs": True, "report_attachments": [], "success_recipients": [], "failure_recipients": [], "timeout_recipients": [], "stopped_recipients": [] } new_job = cml.create_job(create_jobs_params) new_job_id = new_job["id"] print("Created new job with jobid", new_job_id) ## # Start a job job_env_params = {} start_job_params = {"environment": job_env_params} job_status = cml.start_job(new_job_id, start_job_params) print("Job started") # Create model build script cdsw_script = """#!/bin/bash pip3 install -r requirements.txt""" with open("cdsw-build.sh", 'w+') as f:
{"user_id": user_obj["id"], "user": user_obj, "success": False, "failure": False, "timeout": False, "stopped": False } ], "recipients": {}, "attachments": [], "include_logs": True, "report_attachments": [], "success_recipients": [], "failure_recipients": [], "timeout_recipients": [], "stopped_recipients": [] } new_job = cml.create_job(create_jobs_params) new_job_id = new_job["id"] print("Created new job with jobid", new_job_id) ### Step 5: Create and Schedule two CML Jobs for # 02_PredictPipeline.py, 03_A_RetrainPipeline_PySpark.py and 03_B_RetrainPipeline_Sklearn.py # Create Job create_jobs_params = {"name": "Customer Scoring Job", "type": "cron", "script": "02_PredictPipeline.py", "timezone": "America/Los_Angeles", "environment": {}, "kernel": "python3", "cpu": 2, "memory": 4,