def test_eeg_absolute(self, subject, events_filename, expected_basenames): path = resource_filename("cmlreaders.test.data", events_filename) events = EventReader.fromfile(path) reader = EEGReader("eeg", subject) new_events = reader._eegfile_absolute(events) for eegfile in new_events[ new_events["eegfile"].notnull()]["eegfile"].unique(): assert eegfile in expected_basenames
def test_load_with_empty_events(self): sources_file = resource_filename("cmlreaders.test.data", "sources.json") with patch.object(PathFinder, "find", return_value=sources_file): reader = EEGReader("eeg") with pytest.raises(ValueError): data = np.random.random((10, 10, 10)) with patch.object(RamulatorHDF5Reader, "read", return_value=[data, None]): reader.load()
def test_rereference(self, reader_class, rerefable): """Test rereferencing without rhino by using known, fake data.""" if reader_class == SplitEEGReader: eeg_path = self.to_split_eeg() if reader_class == RamulatorHDF5Reader: eeg_path = self.to_ramulator_hdf5(rerefable) scheme = pd.DataFrame({ "contact_1": [1 + a for a in self.anodes], "contact_2": [1 + c for c in self.cathodes], "label": self.pair_labels, }) with patch.object(PathFinder, "find", return_value=self.sources_path): reader = EEGReader("eeg", subject="R1111M") eeg = reader.load(events=self.events(str(eeg_path)), rel_start=0, rel_stop=self.data.shape[-1], scheme=scheme) assert_equal(eeg.data[0], self.reref_data)