Esempio n. 1
1
	def test_mogsm(self):
		mcgsm = MCGSM(
			dim_in=0,
			dim_out=3,
			num_components=2,
			num_scales=2,
			num_features=0)

		p0 = 0.3
		p1 = 0.7
		N = 20000
		m0 = array([[2], [0], [0]])
		m1 = array([[0], [2], [1]])
		C0 = cov(randn(mcgsm.dim_out, mcgsm.dim_out**2))
		C1 = cov(randn(mcgsm.dim_out, mcgsm.dim_out**2))
		input = zeros([0, N])
		output = hstack([
			dot(cholesky(C0), randn(mcgsm.dim_out, round(p0 * N))) + m0,
			dot(cholesky(C1), randn(mcgsm.dim_out, round(p1 * N))) + m1]) * (rand(1, N) + 0.5)

		mcgsm.train(input, output, parameters={
			'verbosity': 0,
			'max_iter': 10,
			'train_means': True})

		mogsm = MoGSM(3, 2, 2)

		# translate parameters from MCGSM to MoGSM
		mogsm.priors = sum(exp(mcgsm.priors), 1) / sum(exp(mcgsm.priors))

		for k in range(mogsm.num_components):
			mogsm[k].mean = mcgsm.means[:, k]
			mogsm[k].covariance = inv(dot(mcgsm.cholesky_factors[k], mcgsm.cholesky_factors[k].T))
			mogsm[k].scales = exp(mcgsm.scales[k, :])
			mogsm[k].priors = exp(mcgsm.priors[k, :]) / sum(exp(mcgsm.priors[k, :]))

		self.assertAlmostEqual(mcgsm.evaluate(input, output), mogsm.evaluate(output), 5)

		mogsm_samples = mogsm.sample(N)
		mcgsm_samples = mcgsm.sample(input)

		# generated samples should have the same distribution
		for i in range(mogsm.dim):
			self.assertTrue(ks_2samp(mogsm_samples[i], mcgsm_samples[0]) > 0.0001)
			self.assertTrue(ks_2samp(mogsm_samples[i], mcgsm_samples[1]) > 0.0001)
			self.assertTrue(ks_2samp(mogsm_samples[i], mcgsm_samples[2]) > 0.0001)

		posterior = mcgsm.posterior(input, mcgsm_samples)

		# average posterior should correspond to prior
		for k in range(mogsm.num_components):
			self.assertLess(abs(1 - mean(posterior[k]) / mogsm.priors[k]), 0.1)
Esempio n. 2
0
	def test_basics(self):
		model = MoGSM(1, 4, 1)

		model.priors = arange(model.num_components) + 1.
		model.priors = model.priors / sum(model.priors)

		for k in range(model.num_components):
			model[k].mean = [[k]]
			model[k].scales = [[1000.]]

		n = 1000
		samples = asarray(model.sample(n) + .5, dtype=int)

		for k in range(model.num_components):
			p = model.priors.ravel()[k]
			x = sum(samples == k)
			c = binom.cdf(x, n, p)
			self.assertGreater(c, 1e-5)
			self.assertGreater(1. - c, 1e-5)
Esempio n. 3
0
    def test_mogsm(self):
        mcgsm = MCGSM(dim_in=0,
                      dim_out=3,
                      num_components=2,
                      num_scales=2,
                      num_features=0)

        p0 = 0.3
        p1 = 0.7
        N = 20000
        m0 = array([[2], [0], [0]])
        m1 = array([[0], [2], [1]])
        C0 = cov(randn(mcgsm.dim_out, mcgsm.dim_out**2))
        C1 = cov(randn(mcgsm.dim_out, mcgsm.dim_out**2))
        input = zeros([0, N])
        output = hstack([
            dot(cholesky(C0), randn(mcgsm.dim_out, round(p0 * N))) + m0,
            dot(cholesky(C1), randn(mcgsm.dim_out, round(p1 * N))) + m1
        ]) * (rand(1, N) + 0.5)

        mcgsm.train(input,
                    output,
                    parameters={
                        'verbosity': 0,
                        'max_iter': 10,
                        'train_means': True
                    })

        mogsm = MoGSM(3, 2, 2)

        # translate parameters from MCGSM to MoGSM
        mogsm.priors = sum(exp(mcgsm.priors), 1) / sum(exp(mcgsm.priors))

        for k in range(mogsm.num_components):
            mogsm[k].mean = mcgsm.means[:, k]
            mogsm[k].covariance = inv(
                dot(mcgsm.cholesky_factors[k], mcgsm.cholesky_factors[k].T))
            mogsm[k].scales = exp(mcgsm.scales[k, :])
            mogsm[k].priors = exp(mcgsm.priors[k, :]) / sum(
                exp(mcgsm.priors[k, :]))

        self.assertAlmostEqual(mcgsm.evaluate(input, output),
                               mogsm.evaluate(output), 5)

        mogsm_samples = mogsm.sample(N)
        mcgsm_samples = mcgsm.sample(input)

        # generated samples should have the same distribution
        for i in range(mogsm.dim):
            self.assertTrue(
                ks_2samp(mogsm_samples[i], mcgsm_samples[0]) > 0.0001)
            self.assertTrue(
                ks_2samp(mogsm_samples[i], mcgsm_samples[1]) > 0.0001)
            self.assertTrue(
                ks_2samp(mogsm_samples[i], mcgsm_samples[2]) > 0.0001)

        posterior = mcgsm.posterior(input, mcgsm_samples)

        # average posterior should correspond to prior
        for k in range(mogsm.num_components):
            self.assertLess(abs(1 - mean(posterior[k]) / mogsm.priors[k]), 0.1)