def normal(shape, dtype=default_override_or(np.float32), mean=0.0, scale=1.0, seed=auto_select, name=''): """normal(shape, dtype=default_override_or(np.float32), mean=0.0, scale=1.0, seed=auto_select, name='') Generates samples from the normal distribution with mean `mean` and standard deviation `scale`. Args: shape (tuple): shape of the output (entries are independent random draws) dtype (np.float32 or np.float64): data type. Default is np.float32. mean (float): mean of the distribution scale (float): scale (standard deviation) of the distribution seed (int): pseudo random number generator seed (default: automatically select a unique seed) name (str, optional): the name of the Function instance in the network Returns: :class:`~cntk.ops.functions.Function` Examples: >>> z = C.random.normal((2,3), seed=98052) >>> z.eval(device=C.cpu()) # explicitly setting cpu because this is tested on multiple platforms; leave it unspecified in your code array([[ 1.803254, 0.995395, -0.631974], [-1.73672 , 0.005615, -0.340025]], dtype=float32) """ from cntk.cntk_py import normal_random shape, dtype = sanitize_random_args(shape, dtype) return normal_random(shape, dtype, mean, scale, seed, name)