Esempio n. 1
0
def cgan_generator(z, y):
    with C.layers.default_options(init=C.normal(scale=0.02), bias=False, map_rank=1, use_cntk_engine=True):
        h = C.splice(z, y, axis=0)

        h = C.relu(BatchNormalization()(Dense(1024)(h)))
        h = C.relu(BatchNormalization()(Dense((128, 7, 7))(h)))
        h = C.relu(BatchNormalization()(ConvolutionTranspose2D(
            (5, 5), 128, strides=(2, 2), pad=True, output_shape=(14, 14))(h)))
        h = ConvolutionTranspose2D((5, 5), 1, activation=C.sigmoid, strides=(2, 2), pad=True, output_shape=(28, 28))(h)

    return C.reshape(h, input_dim)
Esempio n. 2
0
def cgan_discriminator(x, y):
    with C.layers.default_options(init=C.normal(scale=0.02), map_rank=1, use_cntk_engine=True):
        hx = C.reshape(x, (1, 28, 28))
        hy = C.ones_like(hx) * C.reshape(y, (label_dim, 1, 1))
        h = C.splice(hx, hy, axis=0)

        h = C.leaky_relu((Convolution2D((5, 5), 1, strides=(2, 2))(h)), alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((5, 5), 64, strides=(2, 2))(h)), alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Dense(1024)(h)), alpha=0.2)

        h = Dense(1, activation=C.sigmoid)(h)

    return h
Esempio n. 3
0
def _create_convolution_model_with_skip_level_links():

    with C.layers.default_options(init=C.glorot_uniform(), activation=C.relu):
        h = feature_var
        # The first two layers has bias=False to test, the conversion
        # work with and without bias in the Convolution.
        a = C.layers.Convolution2D(filter_shape=(5,5),
                                   num_filters=64,
                                   strides=(2,2),
                                   pad=True, bias=False, name='first_convo')(h)

        a = BatchNormalization(map_rank=1, 
                               normalization_time_constant=4096, 
                               use_cntk_engine=True, init_scale=1, 
                               disable_regularization=True)(a)
        
        b = C.layers.Convolution2D(filter_shape=(5,5),
                                   num_filters=64,
                                   strides=(2,2),
                                   pad=True, bias=False, name='second_convo')(h)

        b = BatchNormalization(map_rank=1, 
                               normalization_time_constant=4096, 
                               use_cntk_engine=True, init_scale=1, 
                               disable_regularization=True)(b)

        h = a + b

        h = C.layers.Convolution2D(filter_shape=(5,5),
                                   num_filters=64,
                                   strides=(1,1),
                                   pad=True, name='thrid_convo')(h)

        h = BatchNormalization(map_rank=1, 
                               normalization_time_constant=4096, 
                               use_cntk_engine=True, init_scale=1, 
                               disable_regularization=True)(h)

        h = C.layers.Convolution2D(filter_shape=(5,5),
                                   num_filters=64,
                                   strides=(1,1),
                                   pad=True, name='fourth_convo')(h)

        h = BatchNormalization(map_rank=1, 
                               normalization_time_constant=4096, 
                               use_cntk_engine=True, init_scale=1, 
                               disable_regularization=True)(h)

        r = C.layers.Dense(num_classes, activation=None, name='classify')(h)
    return r
Esempio n. 4
0
def pix2pix_discriminator(y, x):
    with C.layers.default_options(init=C.normal(0.02), pad=True, bias=False, map_rank=1, use_cntk_engine=True):
        x = C.leaky_relu(Convolution2D((3, 3), 32, strides=2, bias=True)(x), alpha=0.2)
        y = C.leaky_relu(Convolution2D((3, 3), 32, strides=2, bias=True)(y), alpha=0.2)

        h = C.splice(x, y, axis=0)

        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3), 128, strides=2)(h)), alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3), 256, strides=2)(h)), alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3), 512, strides=2)(h)), alpha=0.2)

        h = Convolution2D((1, 1), 1, activation=None, bias=True)(h)

        return h
def create_model(feature_dimensions, classes):
    with default_options(activation=relu, init=glorot_uniform()):
        model = Sequential([
            For(
                range(3), lambda i: [
                    Convolution((5, 5), [32, 32, 64][i], pad=True),
                    BatchNormalization(map_rank=1),
                    MaxPooling((3, 3), strides=(2, 2))
                ]),
            Dense(64),
            BatchNormalization(map_rank=1),
            Dense(len(classes), activation=None)
        ])

    return model(feature_dimensions)
Esempio n. 6
0
def convolution_bn(input, filter_size, num_filters, strides=(1,1), init=he_normal(), activation=relu):
    if activation is None:
        activation = lambda x: x
        
    r = Convolution(filter_size, num_filters, strides=strides, init=init, activation=None, pad=True, bias=False)(input)
    r = BatchNormalization(map_rank=1)(r)
    r = activation(r)
    
    return r
Esempio n. 7
0
def conv_bn(input, filter_size, num_filters, strides=(1, 1), init=he_normal()):
    c = Convolution(filter_size,
                    num_filters,
                    activation=None,
                    init=init,
                    pad=True,
                    strides=strides,
                    bias=False)(input)
    r = BatchNormalization(map_rank=1,
                           normalization_time_constant=4096,
                           use_cntk_engine=False)(c)
    return r
Esempio n. 8
0
def dcgan_discriminator(h):
    with C.layers.default_options(init=C.normal(0.02),
                                  pad=True,
                                  bias=False,
                                  map_rank=1,
                                  use_cntk_engine=True):
        h = C.leaky_relu(Convolution2D((3, 3), 32, strides=2, bias=True)(h),
                         alpha=0.2)

        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3),
                                                            64,
                                                            strides=2)(h)),
                         alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3),
                                                            128,
                                                            strides=2)(h)),
                         alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3),
                                                            256,
                                                            strides=2)(h)),
                         alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3),
                                                            512,
                                                            strides=2)(h)),
                         alpha=0.2)
        h = C.leaky_relu(BatchNormalization()(Convolution2D((3, 3),
                                                            1024,
                                                            strides=2)(h)),
                         alpha=0.2)

        h = Convolution2D((4, 4),
                          1,
                          activation=C.sigmoid,
                          pad=False,
                          bias=True,
                          strides=1)(h)

        return h
Esempio n. 9
0
def conv_bn_relu_layer(input,
                       num_filters,
                       filter_size,
                       strides=(1, 1),
                       pad=True,
                       bnTimeConst=4096,
                       init=he_normal()):
    conv = Convolution(filter_size,
                       num_filters,
                       activation=None,
                       init=init,
                       pad=pad,
                       strides=strides,
                       bias=False)(input)
    bn = BatchNormalization(map_rank=1,
                            normalization_time_constant=bnTimeConst,
                            use_cntk_engine=False)(conv)
    return relu(bn)
Esempio n. 10
0
def conv_bn(input,
            filter_size,
            num_filters,
            strides=(1, 1),
            init=C.he_normal(),
            bn_init_scale=1):
    c = Convolution2D(filter_size,
                      num_filters,
                      activation=None,
                      init=init,
                      pad=True,
                      strides=strides,
                      bias=False)(input)
    r = BatchNormalization(map_rank=1,
                           normalization_time_constant=4096,
                           use_cntk_engine=False,
                           init_scale=bn_init_scale,
                           disable_regularization=True)(c)
    return r
Esempio n. 11
0
def conv_bn(layer_input,
            filter_size,
            num_filters,
            strides,
            init=he_normal(),
            name=''):
    """
    Returns a convolutional layer followed by a batch normalization layer
    """
    r = Convolution(filter_size,
                    num_filters,
                    activation=None,
                    init=init,
                    pad=True,
                    strides=strides,
                    bias=True,
                    name=name)(layer_input)
    r = BatchNormalization(map_rank=1,
                           normalization_time_constant=4096,
                           name='{}_bn'.format(name))(r)
    return r
Esempio n. 12
0
def create_network():
    input_var = cntk.sequence.input_variable((num_channels, frame_height, frame_width), name='input_var')
    target_var = cntk.input_variable((num_classes,), is_sparse=True, name='target_var')

    with cntk.layers.default_options(enable_self_stabilization=True):
        model = Sequential([
            resnet_model(cntk.placeholder()), Label('resnet'),
            Dense(hidden_dim, name='cnn_fc'),
            cntk.layers.Stabilizer(),
            bidirectional_recurrence(LSTM(hidden_dim // 2), LSTM(hidden_dim // 2)),
            cntk.sequence.last,
            BatchNormalization(),
            Dense(num_classes)
        ])(input_var)

    return {
        'input': input_var,
        'target': target_var,
        'model': model,
        'loss': cntk.cross_entropy_with_softmax(model, target_var),
        'metric': cntk.classification_error(model, target_var)
    }
Esempio n. 13
0
def dcgan_generator(h):
    with C.layers.default_options(init=C.normal(0.02),
                                  pad=True,
                                  bias=False,
                                  map_rank=1,
                                  use_cntk_engine=True):
        h = C.reshape(h, (-1, 1, 1))

        h = ConvolutionTranspose2D((4, 4),
                                   1024,
                                   pad=False,
                                   strides=1,
                                   output_shape=(4, 4))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D(
            (5, 5),
            512,
            strides=2,
            output_shape=(img_height // 32, img_width // 32))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D(
            (5, 5),
            256,
            strides=2,
            output_shape=(img_height // 16, img_width // 16))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D(
            (5, 5),
            128,
            strides=2,
            output_shape=(img_height // 8, img_width // 8))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D(
            (5, 5),
            64,
            strides=2,
            output_shape=(img_height // 4, img_width // 4))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D(
            (5, 5),
            32,
            strides=2,
            output_shape=(img_height // 2, img_width // 2))(h)
        h = BatchNormalization()(h)
        h = C.relu(h)

        h = ConvolutionTranspose2D((5, 5),
                                   3,
                                   strides=2,
                                   bias=True,
                                   output_shape=(img_height, img_width))(h)
        h = C.tanh(h)

        return h
Esempio n. 14
0
    def test_batch_normalization_layer(self):
        # Test a model with a single CNTK BatchNormalization layer against the equivalent ELL predictor
        # This verifies that the import functions reshape and reorder values appropriately and
        # that the equivalent ELL layer produces comparable output

        # Create a BatchNormalization CNTK layer
        batchNorm = BatchNormalization(map_rank=1)

        # Input order for CNTK is channels, rows, columns
        x = input((16, 10, 10))
        cntkModel = batchNorm(x)

        # Create a test set of scales and biases to use for both CNTK and ELL layers
        scaleValues = np.linspace(0.1, 0.5, num=16, dtype=np.float_)
        batchNorm.parameters[0].value = scaleValues
        scaleVector = ELL.FloatVector(scaleValues)

        biasValues = np.linspace(1, 2, num=16, dtype=np.float_)
        batchNorm.parameters[1].value = biasValues
        biasVector = ELL.FloatVector(biasValues)

        # CNTK's BatchNormalization does not support overriding the running mean and variance,
        # so we use zeros, which are the default values
        meanVector = ELL.FloatVector(16)
        varianceVector = ELL.FloatVector(16)

        # Create the equivalent ELL predictor
        layers = []
        layerParameters = ELL.LayerParameters(
            ELL.LayerShape(
                10, 10, 16),  # Input order for ELL is rows, columns, channels
            ELL.NoPadding(),
            ELL.LayerShape(10, 10, 16),
            ELL.NoPadding())

        # CNTK BatchNorm = ELL's BatchNorm + Scaling + Bias
        # 1e-5 is the default epsilon for CNTK's BatchNormalization Layer
        epsilon = 1e-5
        layers.append(
            ELL.FloatBatchNormalizationLayer(layerParameters, meanVector,
                                             varianceVector, epsilon,
                                             ELL.EpsilonSummand_variance))
        layers.append(ELL.FloatScalingLayer(layerParameters, scaleVector))
        layers.append(ELL.FloatBiasLayer(layerParameters, biasVector))

        predictor = ELL.FloatNeuralNetworkPredictor(layers)

        # Compare the results
        inputValues = np.linspace(-5, 5, num=16 * 10 * 10,
                                  dtype=np.float32).reshape(16, 10, 10)
        cntkResults = cntkModel(inputValues)

        orderedCntkResults = cntk_to_ell.get_float_vector_from_cntk_array(
            cntkResults
        )  # Note that cntk inserts an extra dimension of 1 in the front
        orderedInputValues = cntk_to_ell.get_float_vector_from_cntk_array(
            inputValues)
        ellResults = predictor.Predict(orderedInputValues)

        # Compare them (precision is 1 less decimal place from epsilon)
        np.testing.assert_array_almost_equal(
            orderedCntkResults, ellResults, 4,
            'results for BatchNormalization layer do not match!')

        return
Esempio n. 15
0
from autcar import Trainer
from cntk.layers import Dense, Sequential, Activation, Convolution2D, MaxPooling, Dropout, BatchNormalization
from cntk import softmax, relu

input_folder_path = "src/ml/data/autcar_training"
output_folder_path = "src/ml/data/autcar_training_balanced"
image_width = 224
image_height = 168

trainer = Trainer(deeplearning_framework="cntk", image_height=image_height, image_width=image_width)
trainer.create_balanced_dataset(input_folder_path, output_folder_path=output_folder_path)

model = Sequential([
    Convolution2D(filter_shape=(5,5), num_filters=32, strides=(1,1), pad=True, name="first_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="first_max"),
    Convolution2D(filter_shape=(3,3), num_filters=48, strides=(1,1), pad=True, name="second_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="second_max"),
    Convolution2D(filter_shape=(3,3), num_filters=64, strides=(1,1), pad=True, name="third_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    MaxPooling(filter_shape=(3,3), strides=(2,2), name="third_max"),
    Convolution2D(filter_shape=(5,5), num_filters=32, strides=(1,1), pad=True, name="fourth_conv"),
    BatchNormalization(map_rank=1),
    Activation(relu),
    Dense(100, activation=relu),
    Dropout(0.1),
    Dense(12, activation=softmax)
Esempio n. 16
0
def pix2pix_generator(h):
    with C.layers.default_options(init=C.normal(0.02), pad=True, bias=False, map_rank=1, use_cntk_engine=True):
        h_enc1 = C.leaky_relu(Convolution2D((4, 4), 64, strides=2, bias=True)(h), alpha=0.2)
        h_enc2 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 128, strides=2)(h_enc1)), alpha=0.2)
        h_enc3 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 256, strides=2)(h_enc2)), alpha=0.2)
        h_enc4 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 512, strides=2)(h_enc3)), alpha=0.2)
        h_enc5 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 512, strides=2)(h_enc4)), alpha=0.2)
        h_enc6 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 512, strides=2)(h_enc5)), alpha=0.2)
        h_enc7 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 512, strides=1)(h_enc6)), alpha=0.2)
        h_enc8 = C.leaky_relu(BatchNormalization()(Convolution2D((4, 4), 512, strides=1)(h_enc7)), alpha=0.2)

        h_dec8 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 512, strides=1, pad=True, output_shape=(img_height // 64, img_width // 64))(h_enc8)))
        h_dec8 = C.splice(h_dec8, h_enc8, axis=0)
        h_dec8 = C.relu(h_dec8)

        h_dec7 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 512, strides=1, pad=True, output_shape=(img_height // 64, img_width // 64))(h_dec8)))
        h_dec7 = C.splice(h_dec7, h_enc7, axis=0)
        h_dec7 = C.relu(h_dec7)

        h_dec6 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 512, strides=1, pad=True, output_shape=(img_height // 64, img_width // 64))(h_dec7)))
        h_dec6 = C.splice(h_dec6, h_enc6, axis=0)
        h_dec6 = C.relu(h_dec6)

        h_dec5 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 512, strides=2, pad=True, output_shape=(img_height // 32, img_width // 32))(h_dec6)))
        h_dec5 = C.splice(h_dec5, h_enc5, axis=0)
        h_dec5 = C.relu(h_dec5)

        h_dec4 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 512, strides=2, pad=True, output_shape=(img_height // 16, img_width // 16))(h_dec5)))
        h_dec4 = C.splice(h_dec4, h_enc4, axis=0)
        h_dec4 = C.relu(h_dec4)

        h_dec3 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 256, strides=2, pad=True, output_shape=(img_height // 8, img_width // 8))(h_dec4)))
        h_dec3 = C.splice(h_dec3, h_enc3, axis=0)
        h_dec3 = C.relu(h_dec3)

        h_dec2 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 128, strides=2, pad=True, output_shape=(img_height // 4, img_width // 4))(h_dec3)))
        h_dec2 = C.splice(h_dec2, h_enc2, axis=0)
        h_dec2 = C.relu(h_dec2)

        h_dec1 = Dropout(0.5)(BatchNormalization()(ConvolutionTranspose2D(
            (4, 4), 64, strides=2, pad=True, output_shape=(img_height // 2, img_width // 2))(h_dec2)))
        h_dec1 = C.splice(h_dec1, h_enc1, axis=0)
        h_dec1 = C.relu(h_dec1)

        h = ConvolutionTranspose2D((4, 4), 3, activation=C.tanh, strides=2, pad=True, bias=True,
                                   output_shape=(img_height, img_width))(h_dec1)

        return h