def test_ndcg(value, output, gain, device_id, precision): dt = PRECISION_TO_TYPE[precision] score = AA(output, dtype=dt).reshape(-1,1,1) gain = AA(gain, dtype=dt).reshape(-1,1,1) group = np.ones_like(score).reshape(-1,1,1) expected_value = AA(value, dtype=dt) from cntk.metrics import ndcg_at_1 g = input((1,)) s = input((1,)) n = input((1,)) f = ndcg_at_1(s, n, g) actual_value = f.eval({s:score, n:gain, g:group}) assert np.allclose(actual_value, expected_value)
def test_ndcg(value, output, gain, device_id, precision): dt = PRECISION_TO_TYPE[precision] score = AA(output, dtype=dt).reshape(-1,1,1) gain = AA(gain, dtype=dt).reshape(-1,1,1) group = np.ones_like(score).reshape(-1,1,1) expected_value = AA(value, dtype=dt) from cntk.metrics import ndcg_at_1 g = I((1,)) s = I((1,)) n = I((1,)) f = ndcg_at_1(s, n, g) actual_value = f.eval({s:score, n:gain, g:group}) assert np.allclose(actual_value, expected_value)