def train_sequence_classifier(): input_dim = 2000 cell_dim = 25 hidden_dim = 25 embedding_dim = 50 num_output_classes = 5 # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes=[Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim, True, 'x'), StreamConfiguration(labels_stream_name, num_output_classes, False, 'y') ], 0) features_si = mb_source.stream_info(features) labels_si = mb_source.stream_info(label) # Instantiate the trainer object to drive the model training lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { features: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def cifar_resnet(): dev = 0 cntk_dev = cntk_device(dev) epoch_size = sys.maxsize mbs = create_mb_source(epoch_size) stream_infos = mbs.stream_infos() for si in stream_infos: if si.m_name == 'features': features_si = si elif si.m_name == 'labels': labels_si = si image_shape = features_si.m_sample_layout.dimensions() image_shape = (image_shape[2], image_shape[0], image_shape[1]) num_classes = labels_si.m_sample_layout.dimensions()[0] image_input = variable(image_shape, features_si.m_element_type, needs_gradient=False, name="Images") classifier_output = resnet_classifer(image_input, num_classes, dev, "classifierOutput") label_var = variable((num_classes), features_si.m_element_type, needs_gradient=False, name="Labels") ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) #TODO: add save and load module code image_classifier = combine([ce, pe, classifier_output], "ImageClassifier") lr = learning_rates_per_sample(0.0078125) mb_size = 32 num_mbs = 1000 trainer = Trainer(classifier_output, ce, pe, [sgdlearner(classifier_output.owner.parameters(), lr)]) for i in range(0, num_mbs): mb = mbs.get_next_minibatch(mb_size, cntk_dev) arguments = dict() arguments[image_input] = mb[features_si].m_data arguments[label_var] = mb[labels_si].m_data trainer.train_minibatch(arguments, cntk_dev) freq = 20 if i % freq == 0: training_loss = get_train_loss(trainer) eval_crit = get_train_eval_criterion(trainer) print( "Minibatch: {}, Train Loss: {}, Train Evaluation Criterion: {}" .format(i, training_loss, eval_crit))
def simple_mnist(): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) rel_path = r"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_dim), StreamConfiguration(labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.003125) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { input: mb[features_si].m_data, label: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def ffnet(): input_dim = 2 num_output_classes = 2 num_hidden_layers = 2 hidden_layers_dim = 50 epoch_size = sys.maxsize minibatch_size = 25 num_samples_per_sweep = 10000 num_sweeps_to_train_with = 2 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size lr = learning_rates_per_sample(0.02) input = variable((input_dim,), np.float32, needs_gradient=False, name="features") label = variable((num_output_classes,), np.float32, needs_gradient=False, name="labels") dev = -1 cntk_dev = cntk_device(dev) netout = fully_connected_classifier_net(input, num_output_classes, hidden_layers_dim, num_hidden_layers, dev, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) #TODO: add save and load module code ffnet = combine([ce, pe, netout], "classifier_model") rel_path = r"../../../../Examples/Other/Simple2d/Data/SimpleDataTrain_cntk_text.txt" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) cm = create_text_mb_source(path, input_dim, num_output_classes, epoch_size) stream_infos = cm.stream_infos() for si in stream_infos: if si.m_name == 'features': features_si = si elif si.m_name == 'labels': labels_si = si trainer = Trainer(netout, ce, pe, [sgdlearner(netout.owner.parameters(), lr)]) for i in range(0,int(num_minibatches_to_train)): mb=cm.get_next_minibatch(minibatch_size, cntk_dev) arguments = dict() arguments[input] = mb[features_si].m_data arguments[label] = mb[labels_si].m_data trainer.train_minibatch(arguments, cntk_dev) freq = 20 if i % freq == 0: training_loss = get_train_loss(trainer) eval_crit = get_train_eval_criterion(trainer) print ("Minibatch: {}, Train Loss: {}, Train Evaluation Criterion: {}".format(i, training_loss, eval_crit))
def simple_mnist(): input_dim = 784 num_output_classes = 10 num_hidden_layers = 1 hidden_layers_dim = 200 # Input variables denoting the features and label data input = input_variable(input_dim, np.float32) label = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant((), 0.00390625), input) netout = fully_connected_classifier_net(scaled_input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) rel_path = os.path.join(*"../../../../Examples/Image/MNIST/Data/Train-28x28_cntk_text.txt".split("/")) path = os.path.normpath(os.path.join(abs_path, rel_path)) if not os.path.exists(path): readme_file = os.path.normpath(os.path.join(os.path.dirname(path), "..", "README.md")) raise RuntimeError("File '%s' does not exist. Please follow the instructions at %s to download and prepare it."%(path, readme_file)) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_dim ), StreamConfiguration( labels_stream_name, num_output_classes) ]) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.003125) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training minibatch_size = 32 num_samples_per_sweep = 60000 num_sweeps_to_train_with = 1 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): mb = mb_source.get_next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {input : mb[features_si].m_data, label : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def train_sequence_classifier(): input_dim = 2000; cell_dim = 25; hidden_dim = 25; embedding_dim = 50; num_output_classes = 5; # Input variables denoting the features and label data features = input_variable(shape=input_dim, is_sparse=True) label = input_variable(num_output_classes, dynamic_axes = [Axis.default_batch_axis()]) # Instantiate the sequence classification model classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim) ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_dim, True, 'x' ), StreamConfiguration( labels_stream_name, num_output_classes, False, 'y')], 0) features_si = mb_source.stream_info(features) labels_si = mb_source.stream_info(label) # Instantiate the trainer object to drive the model training lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 200 training_progress_output_freq = 10 i = 0; while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {features : mb[features_si].m_data, label : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def cifar_resnet(): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes) features_si = minibatch_source.stream_info(feats_stream_name) labels_si = minibatch_source.stream_info(labels_stream_name) # Input variables denoting the features and label data image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type) label_var = input_variable((num_classes), features_si.m_element_type) # Instantiate the resnet classification model classifier_output = resnet_classifer(image_input, num_classes) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.0078125) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training mb_size = 32 training_progress_output_freq = 20 num_mbs = 1000 for i in range(0, num_mbs): mb = minibatch_source.get_next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = { image_input: mb[features_si].m_data, label_var: mb[labels_si].m_data } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def cifar_resnet(): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes) features_si = minibatch_source.stream_info(feats_stream_name) labels_si = minibatch_source.stream_info(labels_stream_name) # Input variables denoting the features and label data image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type) label_var = input_variable((num_classes), features_si.m_element_type) # Instantiate the resnet classification model classifier_output = resnet_classifer(image_input, num_classes) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.0078125) trainer = Trainer(classifier_output, ce, pe, [sgd_learner(classifier_output.owner.parameters(), lr)]) # Get minibatches of images to train with and perform model training mb_size = 32 training_progress_output_freq = 20 num_mbs = 1000 for i in range(0, num_mbs): mb=minibatch_source.get_next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {image_input : mb[features_si].m_data, label_var : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq)
def ffnet(): input_dim = 2 num_output_classes = 2 num_hidden_layers = 2 hidden_layers_dim = 50 # Input variables denoting the features and label data input = input_variable((input_dim), np.float32) label = input_variable((num_output_classes), np.float32) # Instantiate the feedforward classification model netout = fully_connected_classifier_net(input, num_output_classes, hidden_layers_dim, num_hidden_layers, sigmoid) ce = cross_entropy_with_softmax(netout, label) pe = classification_error(netout, label) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.02) trainer = Trainer(netout, ce, pe, [sgd_learner(netout.owner.parameters(), lr)]) # Get minibatches of training data and perform model training minibatch_size = 25 num_samples_per_sweep = 10000 num_sweeps_to_train_with = 2 num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size training_progress_output_freq = 20 for i in range(0, int(num_minibatches_to_train)): features, labels = generate_random_data(minibatch_size, input_dim, num_output_classes) # Specify the mapping of input variables in the model to actual minibatch data to be trained with trainer.train_minibatch({input: features, label: labels}) print_training_progress(trainer, i, training_progress_output_freq)
def train_sequence_to_sequence_translator(): input_vocab_dim = 69 label_vocab_dim = 69 hidden_dim = 512 num_layers = 2 # Source and target inputs to the model input_dynamic_axes = [ Axis('inputAxis'), Axis.default_batch_axis() ] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes = input_dynamic_axes) label_dynamic_axes = [ Axis('labelAxis'), Axis.default_batch_axis() ] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes = label_dynamic_axes) # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_dynamic_axes[0], 1, 0) label_sentence_start = sequence.first(raw_labels) is_first_label = sequence.is_first(label_sequence) label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(encoder_outputH, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_from_ground_truth = label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(decoder_history_from_ground_truth)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i == 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select(isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select(isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization(decoder_outputH, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH decoder_dim = hidden_dim # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration( feature_stream_name, input_vocab_dim, True, 'S0' ), StreamConfiguration( labels_stream_name, label_vocab_dim, True, 'S1') ], 10000) features_si = mb_source.stream_info(feature_stream_name) labels_si = mb_source.stream_info(labels_stream_name) # Instantiate the trainer object to drive the model training lr = learning_rates_per_sample(0.007) momentum_time_constant = 1100 momentum_per_sample = momentums_per_sample(math.exp(-1.0 / momentum_time_constant)) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True trainer = Trainer(z, ce, errs, [momentum_sgd_learner(z.owner.parameters(), lr, momentum_per_sample, clipping_threshold_per_sample, gradient_clipping_with_truncation)]) # Get minibatches of sequences to train with and perform model training minibatch_size = 72 training_progress_output_freq = 10 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual minibatch data to be trained with arguments = {raw_input : mb[features_si].m_data, raw_labels : mb[labels_si].m_data} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1
def train_sequence_classifier(device): input_dim = 2000 cell_dim = 25 hidden_dim = 25 embedding_dim = 50 num_output_classes = 5 features = variable(shape=input_dim, is_sparse=True, name="features") classifier_output = LSTM_sequence_classifer_net(features, num_output_classes, embedding_dim, hidden_dim, cell_dim, device) label = variable(num_output_classes, dynamic_axes=[Axis.default_batch_axis()], name="labels") ce = cross_entropy_with_softmax(classifier_output, label) pe = classification_error(classifier_output, label) #TODO: add save and load module code lstm_net = combine([ce, pe, classifier_output], "classifier_model") rel_path = r"../../../../Tests/EndToEndTests/Text/SequenceClassification/Data/Train.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) cm = create_text_mb_source(path, input_dim, num_output_classes, 0, True, False, "x", "y") stream_infos = cm.stream_infos() for si in stream_infos: if si.m_name == 'features': features_si = si elif si.m_name == 'labels': labels_si = si minibatch_size = 200 lr = lr = learning_rates_per_sample(0.0005) trainer = Trainer(classifier_output, ce, pe, [sgdlearner(classifier_output.owner.parameters(), lr)]) freq = 1 i = 0 cntk_dev = cntk_device(device) while True: mb = cm.get_next_minibatch(minibatch_size, cntk_dev) if len(mb) == 0: break arguments = dict() arguments[features] = mb[features_si].m_data arguments[label] = mb[labels_si].m_data trainer.train_minibatch(arguments, cntk_dev) if i % freq == 0: training_loss = get_train_loss(trainer) eval_crit = get_train_eval_criterion(trainer) print( "Minibatch: {}, Train Loss: {}, Train Evaluation Criterion: {}" .format(i, training_loss, eval_crit)) i += 1