def resnet_cifar10(train_data,
                   test_data,
                   mean_data,
                   network_name,
                   epoch_size,
                   num_quantization_bits=32,
                   block_size=None,
                   warm_up=0,
                   max_epochs=160,
                   restore=True,
                   log_to_file=None,
                   num_mbs_per_log=None,
                   gen_heartbeat=False,
                   scale_up=False,
                   profiling=False,
                   fp16=False):

    set_computation_network_trace_level(0)

    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minimatch size on the same number of samples means less updates,
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    minibatch_size = 128 * (Communicator.num_workers() if scale_up else 1)

    progress_printer = ProgressPrinter(freq=num_mbs_per_log,
                                       tag='Training',
                                       log_to_file=log_to_file,
                                       rank=Communicator.rank(),
                                       gen_heartbeat=gen_heartbeat,
                                       num_epochs=max_epochs)

    network = create_resnet_network(network_name, fp16)
    trainer = create_trainer(network, minibatch_size, epoch_size,
                             num_quantization_bits, block_size, warm_up,
                             progress_printer)
    train_source = create_image_mb_source(train_data,
                                          mean_data,
                                          train=True,
                                          total_number_of_samples=max_epochs *
                                          epoch_size)
    test_source = create_image_mb_source(
        test_data,
        mean_data,
        train=False,
        total_number_of_samples=C.io.FULL_DATA_SWEEP)
    train_and_test(network, trainer, train_source, test_source, minibatch_size,
                   epoch_size, restore, profiling)
Esempio n. 2
0
def parse_arguments(cfg):
    parser = argparse.ArgumentParser()
    parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located',
                        required=False, default=cfg["DATA"].MAP_FILE_PATH)
    parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models',
                        required=False, default=None)
    parser.add_argument('-logdir', '--logdir', help='Log file',
                        required=False, default=None)
    parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int,
                        required=False, default=cfg["CNTK"].MAX_EPOCHS)
    parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int,
                        required=False, default=cfg.MB_SIZE)
    parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int,
                        required=False, default=cfg["DATA"].NUM_TRAIN_IMAGES)
    parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation',
                        type=int,
                        required=False, default='32')
    parser.add_argument('-r', '--restart',
                        help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)',
                        action='store_true')
    parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device",
                        required=False, default=None)
    parser.add_argument('-lrFactor', '--lrFactor', type=float, help="Scale factor for the lr schedule",
                        required=False)
    parser.add_argument('-momentumPerMb', '--momentumPerMb', type=float, help="momentum per minibatch", required=False)
    parser.add_argument('-rndSeed', '--rndSeed', type=int, help="the random seed", required=False)
    parser.add_argument('-trainConv', '--trainConv', type=int, help="whether to train conv layers", required=False)

    args = vars(parser.parse_args())

    if args['lrFactor'] is not None:
        cfg["CNTK"].LR_FACTOR = args['lrrFactor']
    if args['num_epochs'] is not None:
        cfg["CNTK"].MAX_EPOCHS = args['num_epochs']
    if args['momentumPerMb'] is not None:
        cfg.MOMENTUM_PER_MB = args['momentumPerMb']
    if args['rndSeed'] is not None:
        cfg.RND_SEED = args['rndSeed']
    if args['trainConv'] is not None:
        cfg["CNTK"].TRAIN_CONV_LAYERS = True if args['trainConv'] == 1 else False

    if args['datadir'] is not None:
        cfg["DATA"].MAP_FILE_PATH = args['datadir']
    if args['outputdir'] is not None:
        cfg.OUTPUT_PATH = args['outputdir']
    if args['logdir'] is not None:
        log_dir = args['logdir']
    if args['device'] is not None:
        # Setting one worker on GPU and one worker on CPU. Otherwise memory consumption is too high for a single GPU.
        if Communicator.rank() == 0:
            cntk.device.try_set_default_device(cntk.device.gpu(args['device']))
        else:
            cntk.device.try_set_default_device(cntk.device.cpu())
Esempio n. 3
0
def parse_arguments(cfg):
    parser = argparse.ArgumentParser()
    parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located',
                        required=False, default=cfg["DATA"].MAP_FILE_PATH)
    parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models',
                        required=False, default=None)
    parser.add_argument('-logdir', '--logdir', help='Log file',
                        required=False, default=None)
    parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int,
                        required=False, default=cfg["CNTK"].MAX_EPOCHS)
    parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int,
                        required=False, default=cfg.MB_SIZE)
    parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int,
                        required=False, default=cfg["DATA"].NUM_TRAIN_IMAGES)
    parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation',
                        type=int,
                        required=False, default='32')
    parser.add_argument('-r', '--restart',
                        help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)',
                        action='store_true')
    parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device",
                        required=False, default=None)
    parser.add_argument('-lrFactor', '--lrFactor', type=float, help="Scale factor for the lr schedule",
                        required=False)
    parser.add_argument('-momentumPerMb', '--momentumPerMb', type=float, help="momentum per minibatch", required=False)
    parser.add_argument('-rndSeed', '--rndSeed', type=int, help="the random seed", required=False)
    parser.add_argument('-trainConv', '--trainConv', type=int, help="whether to train conv layers", required=False)

    args = vars(parser.parse_args())

    if args['lrFactor'] is not None:
        cfg["CNTK"].LR_FACTOR = args['lrrFactor']
    if args['num_epochs'] is not None:
        cfg["CNTK"].MAX_EPOCHS = args['num_epochs']
    if args['momentumPerMb'] is not None:
        cfg.MOMENTUM_PER_MB = args['momentumPerMb']
    if args['rndSeed'] is not None:
        cfg.RND_SEED = args['rndSeed']
    if args['trainConv'] is not None:
        cfg["CNTK"].TRAIN_CONV_LAYERS = True if args['trainConv'] == 1 else False

    if args['datadir'] is not None:
        cfg["DATA"].MAP_FILE_PATH = args['datadir']
    if args['outputdir'] is not None:
        cfg.OUTPUT_PATH = args['outputdir']
    if args['logdir'] is not None:
        log_dir = args['logdir']
    if args['device'] is not None:
        # Setting one worker on GPU and one worker on CPU. Otherwise memory consumption is too high for a single GPU.
        if Communicator.rank() == 0:
            cntk.device.try_set_default_device(cntk.device.gpu(args['device']))
        else:
            cntk.device.try_set_default_device(cntk.device.cpu())
def resnet_imagenet(train_data, test_data, mean_data, network_name, epoch_size, num_quantization_bits=32, block_size=None, warm_up=0, 
                    max_epochs=90, restore=True, log_to_file=None, num_mbs_per_log=100, gen_heartbeat=False, scale_up=False, profiling=False):

    set_computation_network_trace_level(0)

    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minimatch size on the same number of samples means less updates,
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    minibatch_size = 32 * (Communicator.num_workers() if scale_up else 1)

    progress_printer = ProgressPrinter(
        freq=num_mbs_per_log,
        tag='Training',
        log_to_file=log_to_file,
        rank=Communicator.rank(),
        gen_heartbeat=gen_heartbeat,
        num_epochs=max_epochs)

    network = create_resnet_network(network_name)
    trainer = create_trainer(network, minibatch_size, epoch_size, num_quantization_bits, block_size, warm_up, progress_printer)
    train_source = create_image_mb_source(train_data, mean_data, train=True, total_number_of_samples=max_epochs * epoch_size)
    test_source = create_image_mb_source(test_data, mean_data, train=False, total_number_of_samples=C.io.FULL_DATA_SWEEP)
    train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling)
    if not os.path.isdir(data_path):
        raise RuntimeError("Directory %s does not exist" % data_path)

    mean_data = os.path.join(abs_path, 'ImageNet1K_mean.xml')
    train_data = os.path.join(data_path, 'train_map.txt')
    test_data = os.path.join(data_path, 'val_map.txt')

    num_quantization_bits = args['quantized_bits']
    epochs = args['epochs']
    warm_up = args['distributed_after']
    network_name = args['network']
    scale_up = bool(args['scale_up'])

    # Create distributed trainer factory
    print("Start training: quantize_bit = {}, epochs = {}, distributed_after = {}".format(num_quantization_bits, epochs, warm_up))

    resnet_imagenet(train_data, test_data, mean_data,
                    network_name,
                    epoch_size,
                    num_quantization_bits,
                    block_size=args['block_samples'],
                    warm_up=args['distributed_after'],
                    max_epochs=epochs,
                    restore=not args['restart'],
                    scale_up=scale_up,
                    log_to_file=args['logdir'],
                    profiling=args['profile'])

    # Must call MPI finalize when process exit without exceptions
    Communicator.finalize()
    test_data = os.path.join(data_path, 'test_map.txt')

    num_quantization_bits = args['quantized_bits']
    epochs = args['epochs']
    warm_up = args['distributed_after']
    network_name = args['network']
    scale_up = bool(args['scale_up'])

    # Create distributed trainer factory
    print(
        "Start training: quantize_bit = {}, epochs = {}, distributed_after = {}"
        .format(num_quantization_bits, epochs, warm_up))

    resnet_cifar10(train_data,
                   test_data,
                   mean_data,
                   network_name,
                   epoch_size,
                   num_quantization_bits,
                   block_size=args['block_samples'],
                   warm_up=args['distributed_after'],
                   max_epochs=epochs,
                   restore=not args['restart'],
                   scale_up=scale_up,
                   log_to_file=args['logdir'],
                   profiling=args['profile'],
                   fp16=args['fp16'])

    # Must call MPI finalize when process exit without exceptions
    Communicator.finalize()
def set_global_vars(use_arg_parser=True):
    data_path = map_file_path

    # set and overwrite learning parameters
    globalvars['rpn_lr_factor'] = cfg["CNTK"].RPN_LR_FACTOR
    globalvars['frcn_lr_factor'] = cfg["CNTK"].FRCN_LR_FACTOR
    globalvars['e2e_lr_factor'] = cfg["CNTK"].E2E_LR_FACTOR
    globalvars['momentum_per_mb'] = cfg["CNTK"].MOMENTUM_PER_MB
    globalvars['e2e_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg[
        "CNTK"].E2E_MAX_EPOCHS
    globalvars[
        'rpn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg["CNTK"].RPN_EPOCHS
    globalvars['frcn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg[
        "CNTK"].FRCN_EPOCHS
    globalvars['rnd_seed'] = cfg.RNG_SEED
    globalvars['train_conv'] = cfg["CNTK"].TRAIN_CONV_LAYERS
    globalvars['train_e2e'] = cfg["CNTK"].TRAIN_E2E

    globalvars['fea_map_dim'] = cfg["CNTK"].FEA_MAP_DIM

    if use_arg_parser:
        parser = argparse.ArgumentParser()
        parser.add_argument(
            '-datadir',
            '--datadir',
            help='Data directory where the ImageNet dataset is located',
            required=False,
            default=data_path)
        parser.add_argument('-outputdir',
                            '--outputdir',
                            help='Output directory for checkpoints and models',
                            required=False,
                            default=None)
        parser.add_argument('-logdir',
                            '--logdir',
                            help='Log file',
                            required=False,
                            default=None)
        parser.add_argument('-n',
                            '--num_epochs',
                            help='Total number of epochs to train',
                            type=int,
                            required=False,
                            default=cfg["CNTK"].E2E_MAX_EPOCHS)
        parser.add_argument('-m',
                            '--minibatch_size',
                            help='Minibatch size',
                            type=int,
                            required=False,
                            default=mb_size)
        parser.add_argument('-e',
                            '--epoch_size',
                            help='Epoch size',
                            type=int,
                            required=False,
                            default=epoch_size)
        parser.add_argument(
            '-q',
            '--quantized_bits',
            help='Number of quantized bits used for gradient aggregation',
            type=int,
            required=False,
            default='32')
        parser.add_argument(
            '-r',
            '--restart',
            help=
            'Indicating whether to restart from scratch (instead of restart from checkpoint file by default)',
            action='store_true')
        parser.add_argument(
            '-device',
            '--device',
            type=int,
            help="Force to run the script on a specified device",
            required=False,
            default=None)
        parser.add_argument('-rpnLrFactor',
                            '--rpnLrFactor',
                            type=float,
                            help="Scale factor for rpn lr schedule",
                            required=False)
        parser.add_argument('-frcnLrFactor',
                            '--frcnLrFactor',
                            type=float,
                            help="Scale factor for frcn lr schedule",
                            required=False)
        parser.add_argument('-e2eLrFactor',
                            '--e2eLrFactor',
                            type=float,
                            help="Scale factor for e2e lr schedule",
                            required=False)
        parser.add_argument('-momentumPerMb',
                            '--momentumPerMb',
                            type=float,
                            help="momentum per minibatch",
                            required=False)
        parser.add_argument('-e2eEpochs',
                            '--e2eEpochs',
                            type=int,
                            help="number of epochs for e2e training",
                            required=False)
        parser.add_argument('-rpnEpochs',
                            '--rpnEpochs',
                            type=int,
                            help="number of epochs for rpn training",
                            required=False)
        parser.add_argument('-frcnEpochs',
                            '--frcnEpochs',
                            type=int,
                            help="number of epochs for frcn training",
                            required=False)
        parser.add_argument('-rndSeed',
                            '--rndSeed',
                            type=int,
                            help="the random seed",
                            required=False)
        parser.add_argument('-trainConv',
                            '--trainConv',
                            type=int,
                            help="whether to train conv layers",
                            required=False)
        parser.add_argument('-trainE2E',
                            '--trainE2E',
                            type=int,
                            help="whether to train e2e (otherwise 4 stage)",
                            required=False)

        args = vars(parser.parse_args())

        if args['rpnLrFactor'] is not None:
            globalvars['rpn_lr_factor'] = args['rpnLrFactor']
        if args['frcnLrFactor'] is not None:
            globalvars['frcn_lr_factor'] = args['frcnLrFactor']
        if args['e2eLrFactor'] is not None:
            globalvars['e2e_lr_factor'] = args['e2eLrFactor']
        if args['momentumPerMb'] is not None:
            globalvars['momentum_per_mb'] = args['momentumPerMb']
        if args['e2eEpochs'] is not None:
            globalvars['e2e_epochs'] = args['e2eEpochs']
        if args['rpnEpochs'] is not None:
            globalvars['rpn_epochs'] = args['rpnEpochs']
        if args['frcnEpochs'] is not None:
            globalvars['frcn_epochs'] = args['frcnEpochs']
        if args['rndSeed'] is not None:
            globalvars['rnd_seed'] = args['rndSeed']
        if args['trainConv'] is not None:
            globalvars[
                'train_conv'] = True if args['trainConv'] == 1 else False
        if args['trainE2E'] is not None:
            globalvars['train_e2e'] = True if args['trainE2E'] == 1 else False

        if args['outputdir'] is not None:
            globalvars['output_path'] = args['outputdir']
        if args['logdir'] is not None:
            log_dir = args['logdir']
        if args['device'] is not None:
            # Setting one worker on GPU and one worker on CPU. Otherwise memory consumption is too high for a single GPU.
            if Communicator.rank() == 0:
                cntk.device.try_set_default_device(
                    cntk.device.gpu(args['device']))
            else:
                cntk.device.try_set_default_device(cntk.device.cpu())

        if args['datadir'] is not None:
            data_path = args['datadir']

    if not os.path.isdir(data_path):
        raise RuntimeError("Directory %s does not exist" % data_path)

    globalvars['class_map_file'] = os.path.join(data_path,
                                                globalvars['class_map_file'])
    globalvars['train_map_file'] = os.path.join(data_path,
                                                globalvars['train_map_file'])
    globalvars['test_map_file'] = os.path.join(data_path,
                                               globalvars['test_map_file'])
    globalvars['train_roi_file'] = os.path.join(data_path,
                                                globalvars['train_roi_file'])
    globalvars['test_roi_file'] = os.path.join(data_path,
                                               globalvars['test_roi_file'])

    if cfg["CNTK"].FORCE_DETERMINISTIC:
        force_deterministic_algorithms()
    np.random.seed(seed=globalvars['rnd_seed'])
    globalvars['classes'] = parse_class_map_file(globalvars['class_map_file'])
    globalvars['num_classes'] = len(globalvars['classes'])

    if cfg["CNTK"].DEBUG_OUTPUT:
        # report args
        print("Using the following parameters:")
        print("Flip image       : {}".format(cfg["TRAIN"].USE_FLIPPED))
        print("Train conv layers: {}".format(globalvars['train_conv']))
        print("Random seed      : {}".format(globalvars['rnd_seed']))
        print("Momentum per MB  : {}".format(globalvars['momentum_per_mb']))
        if globalvars['train_e2e']:
            print("E2E epochs       : {}".format(globalvars['e2e_epochs']))
        else:
            print("RPN lr factor    : {}".format(globalvars['rpn_lr_factor']))
            print("RPN epochs       : {}".format(globalvars['rpn_epochs']))
            print("FRCN lr factor   : {}".format(globalvars['frcn_lr_factor']))
            print("FRCN epochs      : {}".format(globalvars['frcn_epochs']))
Esempio n. 8
0
def set_global_vars(use_arg_parser = True):
    data_path = map_file_path

    # set and overwrite learning parameters
    globalvars['rpn_lr_factor'] = cfg["CNTK"].RPN_LR_FACTOR
    globalvars['frcn_lr_factor'] = cfg["CNTK"].FRCN_LR_FACTOR
    globalvars['e2e_lr_factor'] = cfg["CNTK"].E2E_LR_FACTOR
    globalvars['momentum_per_mb'] = cfg["CNTK"].MOMENTUM_PER_MB
    globalvars['e2e_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg["CNTK"].E2E_MAX_EPOCHS
    globalvars['rpn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg["CNTK"].RPN_EPOCHS
    globalvars['frcn_epochs'] = 1 if cfg["CNTK"].FAST_MODE else cfg["CNTK"].FRCN_EPOCHS
    globalvars['rnd_seed'] = cfg.RNG_SEED
    globalvars['train_conv'] = cfg["CNTK"].TRAIN_CONV_LAYERS
    globalvars['train_e2e'] = cfg["CNTK"].TRAIN_E2E


    if use_arg_parser:
        parser = argparse.ArgumentParser()
        parser.add_argument('-datadir', '--datadir', help='Data directory where the ImageNet dataset is located',
                            required=False, default=data_path)
        parser.add_argument('-outputdir', '--outputdir', help='Output directory for checkpoints and models',
                            required=False, default=None)
        parser.add_argument('-logdir', '--logdir', help='Log file',
                            required=False, default=None)
        parser.add_argument('-n', '--num_epochs', help='Total number of epochs to train', type=int,
                            required=False, default=cfg["CNTK"].E2E_MAX_EPOCHS)
        parser.add_argument('-m', '--minibatch_size', help='Minibatch size', type=int,
                            required=False, default=mb_size)
        parser.add_argument('-e', '--epoch_size', help='Epoch size', type=int,
                            required=False, default=epoch_size)
        parser.add_argument('-q', '--quantized_bits', help='Number of quantized bits used for gradient aggregation', type=int,
                            required=False, default='32')
        parser.add_argument('-r', '--restart',
                            help='Indicating whether to restart from scratch (instead of restart from checkpoint file by default)',
                            action='store_true')
        parser.add_argument('-device', '--device', type=int, help="Force to run the script on a specified device",
                            required=False, default=None)
        parser.add_argument('-rpnLrFactor', '--rpnLrFactor', type=float, help="Scale factor for rpn lr schedule", required=False)
        parser.add_argument('-frcnLrFactor', '--frcnLrFactor', type=float, help="Scale factor for frcn lr schedule", required=False)
        parser.add_argument('-e2eLrFactor', '--e2eLrFactor', type=float, help="Scale factor for e2e lr schedule", required=False)
        parser.add_argument('-momentumPerMb', '--momentumPerMb', type=float, help="momentum per minibatch", required=False)
        parser.add_argument('-e2eEpochs', '--e2eEpochs', type=int, help="number of epochs for e2e training", required=False)
        parser.add_argument('-rpnEpochs', '--rpnEpochs', type=int, help="number of epochs for rpn training", required=False)
        parser.add_argument('-frcnEpochs', '--frcnEpochs', type=int, help="number of epochs for frcn training", required=False)
        parser.add_argument('-rndSeed', '--rndSeed', type=int, help="the random seed", required=False)
        parser.add_argument('-trainConv', '--trainConv', type=int, help="whether to train conv layers", required=False)
        parser.add_argument('-trainE2E', '--trainE2E', type=int, help="whether to train e2e (otherwise 4 stage)", required=False)

        args = vars(parser.parse_args())

        if args['rpnLrFactor'] is not None:
            globalvars['rpn_lr_factor'] = args['rpnLrFactor']
        if args['frcnLrFactor'] is not None:
            globalvars['frcn_lr_factor'] = args['frcnLrFactor']
        if args['e2eLrFactor'] is not None:
            globalvars['e2e_lr_factor'] = args['e2eLrFactor']
        if args['momentumPerMb'] is not None:
            globalvars['momentum_per_mb'] = args['momentumPerMb']
        if args['e2eEpochs'] is not None:
            globalvars['e2e_epochs'] = args['e2eEpochs']
        if args['rpnEpochs'] is not None:
            globalvars['rpn_epochs'] = args['rpnEpochs']
        if args['frcnEpochs'] is not None:
            globalvars['frcn_epochs'] = args['frcnEpochs']
        if args['rndSeed'] is not None:
            globalvars['rnd_seed'] = args['rndSeed']
        if args['trainConv'] is not None:
            globalvars['train_conv'] = True if args['trainConv']==1 else False
        if args['trainE2E'] is not None:
            globalvars['train_e2e'] = True if args['trainE2E']==1 else False

        if args['outputdir'] is not None:
            globalvars['output_path'] = args['outputdir']
        if args['logdir'] is not None:
            log_dir = args['logdir']
        if args['device'] is not None:
            # Setting one worker on GPU and one worker on CPU. Otherwise memory consumption is too high for a single GPU.
            if Communicator.rank() == 0:
                cntk.device.try_set_default_device(cntk.device.gpu(args['device']))
            else:
                cntk.device.try_set_default_device(cntk.device.cpu())

        if args['datadir'] is not None:
            data_path = args['datadir']

    if not os.path.isdir(data_path):
        raise RuntimeError("Directory %s does not exist" % data_path)

    globalvars['class_map_file'] = os.path.join(data_path, globalvars['class_map_file'])
    globalvars['train_map_file'] = os.path.join(data_path, globalvars['train_map_file'])
    globalvars['test_map_file'] = os.path.join(data_path, globalvars['test_map_file'])
    globalvars['train_roi_file'] = os.path.join(data_path, globalvars['train_roi_file'])
    globalvars['test_roi_file'] = os.path.join(data_path, globalvars['test_roi_file'])

    if cfg["CNTK"].FORCE_DETERMINISTIC:
        force_deterministic_algorithms()
    np.random.seed(seed=globalvars['rnd_seed'])
    globalvars['classes'] = parse_class_map_file(globalvars['class_map_file'])
    globalvars['num_classes'] = len(globalvars['classes'])

    if cfg["CNTK"].DEBUG_OUTPUT:
        # report args
        print("Using the following parameters:")
        print("Flip image       : {}".format(cfg["TRAIN"].USE_FLIPPED))
        print("Train conv layers: {}".format(globalvars['train_conv']))
        print("Random seed      : {}".format(globalvars['rnd_seed']))
        print("Momentum per MB  : {}".format(globalvars['momentum_per_mb']))
        if globalvars['train_e2e']:
            print("E2E epochs       : {}".format(globalvars['e2e_epochs']))
        else:
            print("RPN lr factor    : {}".format(globalvars['rpn_lr_factor']))
            print("RPN epochs       : {}".format(globalvars['rpn_epochs']))
            print("FRCN lr factor   : {}".format(globalvars['frcn_lr_factor']))
            print("FRCN epochs      : {}".format(globalvars['frcn_epochs']))