Esempio n. 1
0
def post(info_or_yaml_or_file: Union[InputDict, str, os.PathLike],
         sample: Union[SampleCollection, List[SampleCollection], None] = None
         ) -> PostTuple:
    info = load_input_dict(info_or_yaml_or_file)
    logger_setup(info.get("debug"), info.get("debug_file"))
    log = get_logger(__name__)
    # MARKED FOR DEPRECATION IN v3.0
    if info.get("modules"):
        raise LoggedError(log, "The input field 'modules' has been deprecated."
                               "Please use instead %r", packages_path_input)
    # END OF DEPRECATION BLOCK
    info_post: PostDict = info.get("post") or {}
    if not info_post:
        raise LoggedError(log, "No 'post' block given. Nothing to do!")
    if mpi.is_main_process() and info.get("resume"):
        log.warning("Resuming not implemented for post-processing. Re-starting.")
    if not info.get("output") and info_post.get("output") \
            and not info.get("params"):
        raise LoggedError(log, "The input dictionary must have be a full option "
                               "dictionary, or have an existing 'output' root to load "
                               "previous settings from ('output' to read from is in the "
                               "main block not under 'post'). ")
    # 1. Load existing sample
    output_in = get_output(prefix=info.get("output"))
    if output_in:
        info_in = output_in.load_updated_info() or update_info(info)
    else:
        info_in = update_info(info)
    params_in: ExpandedParamsDict = info_in["params"]  # type: ignore
    dummy_model_in = DummyModel(params_in, info_in.get("likelihood", {}),
                                info_in.get("prior"))

    in_collections = []
    thin = info_post.get("thin", 1)
    skip = info_post.get("skip", 0)
    if info.get('thin') is not None or info.get('skip') is not None:  # type: ignore
        raise LoggedError(log, "'thin' and 'skip' should be "
                               "parameters of the 'post' block")

    if sample:
        # If MPI, assume for each MPI process post is passed in the list of
        # collections that should be processed by that process
        # (e.g. single chain output from sampler)
        if isinstance(sample, SampleCollection):
            in_collections = [sample]
        else:
            in_collections = sample
        for i, collection in enumerate(in_collections):
            if skip:
                if 0 < skip < 1:
                    skip = int(round(skip * len(collection)))
                collection = collection.filtered_copy(slice(skip, None))
            if thin != 1:
                collection = collection.thin_samples(thin)
            in_collections[i] = collection
    elif output_in:
        files = output_in.find_collections()
        numbered = files
        if not numbered:
            # look for un-numbered output files
            files = output_in.find_collections(name=False)
        if files:
            if mpi.size() > len(files):
                raise LoggedError(log, "Number of MPI processes (%s) is larger than "
                                       "the number of sample files (%s)",
                                  mpi.size(), len(files))
            for num in range(mpi.rank(), len(files), mpi.size()):
                in_collections += [SampleCollection(
                    dummy_model_in, output_in,
                    onload_thin=thin, onload_skip=skip, load=True, file_name=files[num],
                    name=str(num + 1) if numbered else "")]
        else:
            raise LoggedError(log, "No samples found for the input model with prefix %s",
                              os.path.join(output_in.folder, output_in.prefix))

    else:
        raise LoggedError(log, "No output from where to load from, "
                               "nor input collections given.")
    if any(len(c) <= 1 for c in in_collections):
        raise LoggedError(
            log, "Not enough samples for post-processing. Try using a larger sample, "
                 "or skipping or thinning less.")
    mpi.sync_processes()
    log.info("Will process %d sample points.", sum(len(c) for c in in_collections))

    # 2. Compare old and new info: determine what to do
    add = info_post.get("add") or {}
    if "remove" in add:
        raise LoggedError(log, "remove block should be under 'post', not 'add'")
    remove = info_post.get("remove") or {}
    # Add a dummy 'one' likelihood, to absorb unused parameters
    if not add.get("likelihood"):
        add["likelihood"] = {}
    add["likelihood"]["one"] = None
    # Expand the "add" info, but don't add new default sampled parameters
    orig_params = set(add.get("params") or [])
    add = update_info(add, add_aggr_chi2=False)
    add_params: ExpandedParamsDict = add["params"]  # type: ignore
    for p in set(add_params) - orig_params:
        if p in params_in:
            add_params.pop(p)

    # 2.1 Adding/removing derived parameters and changes in priors of sampled parameters
    out_combined_params = deepcopy_where_possible(params_in)
    remove_params = list(str_to_list(remove.get("params")) or [])
    for p in remove_params:
        pinfo = params_in.get(p)
        if pinfo is None or not is_derived_param(pinfo):
            raise LoggedError(
                log,
                "You tried to remove parameter '%s', which is not a derived parameter. "
                "Only derived parameters can be removed during post-processing.", p)
        out_combined_params.pop(p)
    # Force recomputation of aggregated chi2
    for p in list(out_combined_params):
        if p.startswith(get_chi2_name("")):
            out_combined_params.pop(p)
    prior_recompute_1d = False
    for p, pinfo in add_params.items():
        pinfo_in = params_in.get(p)
        if is_sampled_param(pinfo):
            if not is_sampled_param(pinfo_in):
                # No added sampled parameters (de-marginalisation not implemented)
                if pinfo_in is None:
                    raise LoggedError(
                        log, "You added a new sampled parameter %r (maybe accidentally "
                             "by adding a new likelihood that depends on it). "
                             "Adding new sampled parameters is not possible. Try fixing "
                             "it to some value.", p)
                else:
                    raise LoggedError(
                        log,
                        "You tried to change the prior of parameter '%s', "
                        "but it was not a sampled parameter. "
                        "To change that prior, you need to define as an external one.", p)
            # recompute prior if potentially changed sampled parameter priors
            prior_recompute_1d = True
        elif is_derived_param(pinfo):
            if p in out_combined_params:
                raise LoggedError(
                    log, "You tried to add derived parameter '%s', which is already "
                         "present. To force its recomputation, 'remove' it too.", p)
        elif is_fixed_or_function_param(pinfo):
            # Only one possibility left "fixed" parameter that was not present before:
            # input of new likelihood, or just an argument for dynamical derived (dropped)
            if pinfo_in and p in params_in and pinfo["value"] != pinfo_in.get("value"):
                raise LoggedError(
                    log,
                    "You tried to add a fixed parameter '%s: %r' that was already present"
                    " but had a different value or was not fixed. This is not allowed. "
                    "The old info of the parameter was '%s: %r'",
                    p, dict(pinfo), p, dict(pinfo_in))
        elif not pinfo_in:  # OK as long as we have known value for it
            raise LoggedError(log, "Parameter %s no known value. ", p)
        out_combined_params[p] = pinfo

    out_combined: InputDict = {"params": out_combined_params}  # type: ignore
    # Turn the rest of *derived* parameters into constants,
    # so that the likelihoods do not try to recompute them
    # But be careful to exclude *input* params that have a "derived: True" value
    # (which in "updated info" turns into "derived: 'lambda [x]: [x]'")
    # Don't assign to derived parameters to theories, only likelihoods, so they can be
    # recomputed if needed. If the theory does not need to be computed, it doesn't matter
    # if it is already assigned parameters in the usual way; likelihoods can get
    # the required derived parameters from the stored sample derived parameter inputs.
    out_params_with_computed = deepcopy_where_possible(out_combined_params)

    dropped_theory = set()
    for p, pinfo in out_params_with_computed.items():
        if (is_derived_param(pinfo) and "value" not in pinfo
                and p not in add_params):
            out_params_with_computed[p] = {"value": np.nan}
            dropped_theory.add(p)
    # 2.2 Manage adding/removing priors and likelihoods
    warn_remove = False
    kind: ModelBlock
    for kind in ("prior", "likelihood", "theory"):
        out_combined[kind] = deepcopy_where_possible(info_in.get(kind)) or {}
        for remove_item in str_to_list(remove.get(kind)) or []:
            try:
                out_combined[kind].pop(remove_item, None)
                if remove_item not in (add.get(kind) or []) and kind != "theory":
                    warn_remove = True
            except ValueError:
                raise LoggedError(
                    log, "Trying to remove %s '%s', but it is not present. "
                         "Existing ones: %r", kind, remove_item, list(out_combined[kind]))
        if kind != "theory" and kind in add:
            dups = set(add.get(kind) or []).intersection(out_combined[kind]) - {"one"}
            if dups:
                raise LoggedError(
                    log, "You have added %s '%s', which was already present. If you "
                         "want to force its recomputation, you must also 'remove' it.",
                    kind, dups)
            out_combined[kind].update(add[kind])

    if warn_remove and mpi.is_main_process():
        log.warning("You are removing a prior or likelihood pdf. "
                    "Notice that if the resulting posterior is much wider "
                    "than the original one, or displaced enough, "
                    "it is probably safer to explore it directly.")

    mlprior_names_add = minuslogprior_names(add.get("prior") or [])
    chi2_names_add = [get_chi2_name(name) for name in add["likelihood"] if
                      name != "one"]
    out_combined["likelihood"].pop("one", None)

    add_theory = add.get("theory")
    if add_theory:
        if len(add["likelihood"]) == 1 and not any(
                is_derived_param(pinfo) for pinfo in add_params.values()):
            log.warning("You are adding a theory, but this does not force recomputation "
                        "of any likelihood or derived parameters unless explicitly "
                        "removed+added.")
        # Inherit from the original chain (input|output_params, renames, etc)
        added_theory = add_theory.copy()
        for theory, theory_info in out_combined["theory"].items():
            if theory in list(added_theory):
                out_combined["theory"][theory] = \
                    recursive_update(theory_info, added_theory.pop(theory))
        out_combined["theory"].update(added_theory)

    # Prepare recomputation of aggregated chi2
    # (they need to be recomputed by hand, because auto-computation won't pick up
    #  old likelihoods for a given type)
    all_types = {like: str_to_list(opts.get("type") or [])
                 for like, opts in out_combined["likelihood"].items()}
    types = set(chain(*all_types.values()))
    inv_types = {t: [like for like, like_types in all_types.items() if t in like_types]
                 for t in sorted(types)}
    add_aggregated_chi2_params(out_combined_params, types)

    # 3. Create output collection
    # Use default prefix if it exists. If it does not, produce no output by default.
    # {post: {output: None}} suppresses output, and if it's a string, updates it.
    out_prefix = info_post.get("output", info.get("output"))
    if out_prefix:
        suffix = info_post.get("suffix")
        if not suffix:
            raise LoggedError(log, "You need to provide a '%s' for your output chains.",
                              "suffix")
        out_prefix += separator_files + "post" + separator_files + suffix
    output_out = get_output(prefix=out_prefix, force=info.get("force"))
    output_out.set_lock()

    if output_out and not output_out.force and output_out.find_collections():
        raise LoggedError(log, "Found existing post-processing output with prefix %r. "
                               "Delete it manually or re-run with `force: True` "
                               "(or `-f`, `--force` from the shell).", out_prefix)
    elif output_out and output_out.force and mpi.is_main_process():
        output_out.delete_infos()
        for _file in output_out.find_collections():
            output_out.delete_file_or_folder(_file)
    info_out = deepcopy_where_possible(info)
    info_post = info_post.copy()
    info_out["post"] = info_post
    # Updated with input info and extended (updated) add info
    info_out.update(info_in)  # type: ignore
    info_post["add"] = add

    dummy_model_out = DummyModel(out_combined_params, out_combined["likelihood"],
                                 info_prior=out_combined["prior"])
    out_func_parameterization = Parameterization(out_params_with_computed)

    # TODO: check allow_renames=False?
    model_add = Model(out_params_with_computed, add["likelihood"],
                      info_prior=add.get("prior"), info_theory=out_combined["theory"],
                      packages_path=(info_post.get(packages_path_input) or
                                     info.get(packages_path_input)),
                      allow_renames=False, post=True,
                      stop_at_error=info.get('stop_at_error', False),
                      skip_unused_theories=True, dropped_theory_params=dropped_theory)
    # Remove auxiliary "one" before dumping -- 'add' *is* info_out["post"]["add"]
    add["likelihood"].pop("one")
    out_collections = [SampleCollection(dummy_model_out, output_out, name=c.name,
                                        cache_size=OutputOptions.default_post_cache_size)
                       for c in in_collections]
    # TODO: should maybe add skip/thin to out_combined, so can tell post-processed?
    output_out.check_and_dump_info(info_out, out_combined, check_compatible=False)
    collection_in = in_collections[0]
    collection_out = out_collections[0]

    last_percent = None
    known_constants = dummy_model_out.parameterization.constant_params()
    known_constants.update(dummy_model_in.parameterization.constant_params())
    missing_params = dummy_model_in.parameterization.sampled_params().keys() - set(
        collection_in.columns)
    if missing_params:
        raise LoggedError(log, "Input samples do not contain expected sampled parameter "
                               "values: %s", missing_params)

    missing_priors = set(name for name in collection_out.minuslogprior_names if
                         name not in mlprior_names_add
                         and name not in collection_in.columns)
    if _minuslogprior_1d_name in missing_priors:
        prior_recompute_1d = True
    if prior_recompute_1d:
        missing_priors.discard(_minuslogprior_1d_name)
        mlprior_names_add.insert(0, _minuslogprior_1d_name)
    prior_regenerate: Optional[Prior]
    if missing_priors and "prior" in info_in:
        # in case there are input priors that are not stored in input samples
        # e.g. when postprocessing GetDist/CosmoMC-format chains
        in_names = minuslogprior_names(info_in["prior"])
        info_prior = {piname: inf for (piname, inf), in_name in
                      zip(info_in["prior"].items(), in_names) if
                      in_name in missing_priors}
        regenerated_prior_names = minuslogprior_names(info_prior)
        missing_priors.difference_update(regenerated_prior_names)
        prior_regenerate = Prior(dummy_model_in.parameterization, info_prior)
    else:
        prior_regenerate = None
        regenerated_prior_names = None
    if missing_priors:
        raise LoggedError(log, "Missing priors: %s", missing_priors)

    mpi.sync_processes()
    output_in.check_lock()

    # 4. Main loop! Loop over input samples and adjust as required.
    if mpi.is_main_process():
        log.info("Running post-processing...")
    difflogmax: Optional[float] = None
    to_do = sum(len(c) for c in in_collections)
    weights = []
    done = 0
    last_dump_time = time.time()
    for collection_in, collection_out in zip(in_collections, out_collections):
        importance_weights = []

        def set_difflogmax():
            nonlocal difflogmax
            difflog = (collection_in[OutPar.minuslogpost].to_numpy(
                dtype=np.float64)[:len(collection_out)]
                       - collection_out[OutPar.minuslogpost].to_numpy(dtype=np.float64))
            difflogmax = np.max(difflog)
            if abs(difflogmax) < 1:
                difflogmax = 0  # keep simple when e.g. very similar
            log.debug("difflogmax: %g", difflogmax)
            if mpi.more_than_one_process():
                difflogmax = max(mpi.allgather(difflogmax))
            if mpi.is_main_process():
                log.debug("Set difflogmax: %g", difflogmax)
            _weights = np.exp(difflog - difflogmax)
            importance_weights.extend(_weights)
            collection_out.reweight(_weights)

        for i, point in collection_in.data.iterrows():
            all_params = point.to_dict()
            for p in remove_params:
                all_params.pop(p, None)
            log.debug("Point: %r", point)
            sampled = np.array([all_params[param] for param in
                                dummy_model_in.parameterization.sampled_params()])
            all_params = out_func_parameterization.to_input(all_params).copy()

            # Add/remove priors
            if prior_recompute_1d:
                priors_add = [model_add.prior.logps_internal(sampled)]
                if priors_add[0] == -np.inf:
                    continue
            else:
                priors_add = []
            if model_add.prior.external:
                priors_add.extend(model_add.prior.logps_external(all_params))

            logpriors_add = dict(zip(mlprior_names_add, priors_add))
            logpriors_new = [logpriors_add.get(name, - point.get(name, 0))
                             for name in collection_out.minuslogprior_names]
            if prior_regenerate:
                regenerated = dict(zip(regenerated_prior_names,
                                       prior_regenerate.logps_external(all_params)))
                for _i, name in enumerate(collection_out.minuslogprior_names):
                    if name in regenerated_prior_names:
                        logpriors_new[_i] = regenerated[name]

            if is_debug(log):
                log.debug("New set of priors: %r",
                          dict(zip(dummy_model_out.prior, logpriors_new)))
            if -np.inf in logpriors_new:
                continue
            # Add/remove likelihoods and/or (re-)calculate derived parameters
            loglikes_add, output_derived = model_add._loglikes_input_params(
                all_params, return_output_params=True)
            loglikes_add = dict(zip(chi2_names_add, loglikes_add))
            output_derived = dict(zip(model_add.output_params, output_derived))
            loglikes_new = [loglikes_add.get(name, -0.5 * point.get(name, 0))
                            for name in collection_out.chi2_names]
            if is_debug(log):
                log.debug("New set of likelihoods: %r",
                          dict(zip(dummy_model_out.likelihood, loglikes_new)))
                if output_derived:
                    log.debug("New set of derived parameters: %r", output_derived)
            if -np.inf in loglikes_new:
                continue
            all_params.update(output_derived)

            all_params.update(out_func_parameterization.to_derived(all_params))
            derived = {param: all_params.get(param) for param in
                       dummy_model_out.parameterization.derived_params()}
            # We need to recompute the aggregated chi2 by hand
            for type_, likes in inv_types.items():
                derived[get_chi2_name(type_)] = sum(
                    -2 * lvalue for lname, lvalue
                    in zip(collection_out.chi2_names, loglikes_new)
                    if undo_chi2_name(lname) in likes)
            if is_debug(log):
                log.debug("New derived parameters: %r",
                          {p: derived[p]
                           for p in dummy_model_out.parameterization.derived_params()
                           if p in add["params"]})
            # Save to the collection (keep old weight for now)
            weight = point.get(OutPar.weight)
            mpi.check_errors()
            if difflogmax is None and i > OutputOptions.reweight_after and \
                    time.time() - last_dump_time > OutputOptions.output_inteveral_s / 2:
                set_difflogmax()
                collection_out.out_update()

            if difflogmax is not None:
                logpost_new = sum(logpriors_new) + sum(loglikes_new)
                importance_weight = np.exp(logpost_new + point.get(OutPar.minuslogpost)
                                           - difflogmax)
                weight = weight * importance_weight
                importance_weights.append(importance_weight)
                if time.time() - last_dump_time > OutputOptions.output_inteveral_s:
                    collection_out.out_update()
                    last_dump_time = time.time()

            if weight > 0:
                collection_out.add(sampled, derived=derived.values(), weight=weight,
                                   logpriors=logpriors_new, loglikes=loglikes_new)

            # Display progress
            percent = int(np.round((i + done) / to_do * 100))
            if percent != last_percent and not percent % 5:
                last_percent = percent
                progress_bar(log, percent, " (%d/%d)" % (i + done, to_do))

        if difflogmax is None:
            set_difflogmax()
        if not collection_out.data.last_valid_index():
            raise LoggedError(
                log, "No elements in the final sample. Possible causes: "
                     "added a prior or likelihood valued zero over the full sampled "
                     "domain, or the computation of the theory failed everywhere, etc.")
        collection_out.out_update()
        weights.append(np.array(importance_weights))
        done += len(collection_in)

    assert difflogmax is not None
    points = 0
    tot_weight = 0
    min_weight = np.inf
    max_weight = -np.inf
    max_output_weight = -np.inf
    sum_w2 = 0
    points_removed = 0
    for collection_in, collection_out, importance_weights in zip(in_collections,
                                                                 out_collections,
                                                                 weights):
        output_weights = collection_out[OutPar.weight]
        points += len(collection_out)
        tot_weight += np.sum(output_weights)
        points_removed += len(importance_weights) - len(output_weights)
        min_weight = min(min_weight, np.min(importance_weights))
        max_weight = max(max_weight, np.max(importance_weights))
        max_output_weight = max(max_output_weight, np.max(output_weights))
        sum_w2 += np.dot(output_weights, output_weights)

    (tot_weights, min_weights, max_weights, max_output_weights, sum_w2s, points_s,
     points_removed_s) = mpi.zip_gather(
        [tot_weight, min_weight, max_weight, max_output_weight, sum_w2,
         points, points_removed])

    if mpi.is_main_process():
        output_out.clear_lock()
        log.info("Finished! Final number of distinct sample points: %s", sum(points_s))
        log.info("Importance weight range: %.4g -- %.4g",
                 min(min_weights), max(max_weights))
        if sum(points_removed_s):
            log.info("Points deleted due to zero weight: %s", sum(points_removed_s))
        log.info("Effective number of single samples if independent (sum w)/max(w): %s",
                 int(sum(tot_weights) / max(max_output_weights)))
        log.info(
            "Effective number of weighted samples if independent (sum w)^2/sum(w^2): "
            "%s", int(sum(tot_weights) ** 2 / sum(sum_w2s)))
    products: PostResultDict = {"sample": value_or_list(out_collections),
                                "stats": {'min_importance_weight': (min(min_weights) /
                                                                    max(max_weights)),
                                          'points_removed': sum(points_removed_s),
                                          'tot_weight': sum(tot_weights),
                                          'max_weight': max(max_output_weights),
                                          'sum_w2': sum(sum_w2s),
                                          'points': sum(points_s)},
                                "logpost_weight_offset": difflogmax,
                                "weights": value_or_list(weights)}
    return PostTuple(info=out_combined, products=products)
Esempio n. 2
0
    def run(self):
        """
        Runs `scipy.Minimize`
        """
        results = []
        successes = []

        def minuslogp_transf(x):
            return -self.logp(self.inv_affine_transform(x))

        for i, initial_point in enumerate(self.initial_points):

            self.log.debug("Starting minimization for starting point %s.", i)

            self._affine_transform_baseline = initial_point
            initial_point = self.affine_transform(initial_point)
            np.testing.assert_allclose(initial_point, np.zeros(initial_point.shape))
            bounds = np.array(
                [self.affine_transform(self._bounds[:, i]) for i in range(2)]).T

            try:
                # Configure method
                if self.method.lower() == "bobyqa":
                    self.kwargs = {
                        "objfun": minuslogp_transf,
                        "x0": initial_point,
                        "bounds": np.array(list(zip(*bounds))),
                        "maxfun": self.max_iter,
                        "rhobeg": 1.,
                        "do_logging": (self.log.getEffectiveLevel() == logging.DEBUG)}
                    self.kwargs = recursive_update(self.kwargs,
                                                   self.override_bobyqa or {})
                    self.log.debug("Arguments for pybobyqa.solve:\n%r",
                                   {k: v for k, v in self.kwargs.items() if
                                    k != "objfun"})
                    result = pybobyqa.solve(**self.kwargs)
                    success = result.flag == result.EXIT_SUCCESS
                    if not success:
                        self.log.error("Finished unsuccessfully. Reason: "
                                       + _bobyqa_errors[result.flag])
                else:
                    self.kwargs = {
                        "fun": minuslogp_transf,
                        "x0": initial_point,
                        "bounds": bounds,
                        "options": {
                            "maxiter": self.max_iter,
                            "disp": (self.log.getEffectiveLevel() == logging.DEBUG)}}
                    self.kwargs = recursive_update(self.kwargs, self.override_scipy or {})
                    self.log.debug("Arguments for scipy.optimize.Minimize:\n%r",
                                   {k: v for k, v in self.kwargs.items() if k != "fun"})
                    result = optimize.minimize(**self.kwargs)
                    success = result.success
                    if not success:
                        self.log.error("Finished unsuccessfully.")
            except:
                self.log.error("Minimizer '%s' raised an unexpected error:", self.method)
                raise
            results += [result]
            successes += [success]

        self.process_results(*mpi.zip_gather(
            [results, successes, self.initial_points,
             [self._inv_affine_transform_matrix] * len(self.initial_points)]))