Esempio n. 1
0
 def test_basis_input(self):
     """Test the coboundary operator with some basis as inputs."""
     p_x, p_y = 2, 2
     func_space_0 = FunctionSpace(self.mesh,
                                  '0-lobatto', (p_x, p_y),
                                  is_inner=False)
     func_space_1 = FunctionSpace(self.mesh,
                                  '1-lobatto', (p_x, p_y),
                                  is_inner=False)
     func_space_2 = FunctionSpace(self.mesh,
                                  '2-lobatto', (p_x, p_y),
                                  is_inner=False)
     basis_0_ref = BasisForm(func_space_0)
     basis_1_ref = BasisForm(func_space_1)
     basis_0_ref.quad_grid = 'lobatto'
     basis_1_ref.quad_grid = 'gauss'
     basis_2_ref = BasisForm(func_space_2)
     basis_2_ref.quad_grid = 'lobatto'
     e_21_ref = d_21_lobatto_outer((p_x, p_y))
     e_10_ref = d_10_lobatto_outer((p_x, p_y))
     basis_1, e_10 = d(basis_0_ref)
     basis_1.quad_grid = 'gauss'
     basis_2, e_21 = d(basis_1_ref)
     basis_2.quad_grid = 'lobatto'
     M_1 = inner(basis_1, basis_1)
     M_1_ref = inner(basis_1_ref, basis_1_ref)
     npt.assert_array_almost_equal(M_1_ref, M_1)
     M_2 = inner(basis_2, basis_2)
     M_2_ref = inner(basis_2_ref, basis_2_ref)
     npt.assert_array_almost_equal(M_2_ref, M_2)
     npt.assert_array_equal(e_21_ref, e_21)
     npt.assert_array_equal(e_10_ref, e_10)
Esempio n. 2
0
    def test_func_space_input(self):
        """Test function space input to coboudary operator.

        It should return the incidence matrix.
        """
        p_x, p_y = 3, 3
        func_space = FunctionSpace(self.mesh,
                                   '1-lobatto', (p_x, p_y),
                                   is_inner=False)
        e_21_lobatto_ref = d_21_lobatto_outer((p_x, p_y))
        e_21_lobatto = d(func_space)
        npt.assert_array_almost_equal(e_21_lobatto, e_21_lobatto_ref)
Esempio n. 3
0
    def test_form_input(self):
        p_x, p_y = 3, 3
        func_space = FunctionSpace(self.mesh,
                                   '1-lobatto', (p_x, p_y),
                                   is_inner=False)
        form_1_cochain = np.random.rand((func_space.num_dof))

        form_2_cochain_local_ref = d_21_lobatto_outer(
            (p_x, p_y)) @ cochain_to_local(func_space, form_1_cochain)
        func_space_2 = NextSpace(func_space)
        form_2_cochain_ref = cochain_to_global(func_space_2,
                                               form_2_cochain_local_ref)

        form_1 = Form(func_space, form_1_cochain)

        form_2 = d(form_1)
        npt.assert_array_almost_equal(form_2_cochain_ref, form_2.cochain)
Esempio n. 4
0
basis_0 = BasisForm(func_space_0_ext_gauss)
basis_1 = BasisForm(func_space_1_lobatto)
basis_2 = BasisForm(func_space_2_lobatto)

basis_0.quad_grid = 'gauss'
basis_1.quad_grid = 'lobatto'
basis_2.quad_grid = 'lobatto'

# define forms for soultion using function space

q_1 = Form(func_space_1_lobatto)
# q_1.basis.quad_grid = 'lobatto'
phi_0 = Form(func_space_0_ext_gauss)
# phi_0.basis.quad_grid = 'gauss'

E21 = d_21_lobatto_outer(p)
"""extended E21 with virtual volumes"""

px, py = p

virtual_E21 = np.zeros((px * 4, 2 * px * (px + 1)))

for j in range(px):
    vol_id = px**2 + j
    edge_id = px * (px + 1) + j
    virtual_E21[vol_id - px**2, edge_id] = 1
    virtual_E21[vol_id - px**2 + px, edge_id + px**2] = -1

for i in range(px):
    vol_id = px**2 + 2 * px + i
    edge_id = (px + 1) * i
def main(el, poly_degree):
    dim = 2
    element_layout = (el + 1, el + 1)

    # print(element_layout)
    """define polynomial degree and inner/outer orientation"""

    pp = (poly_degree + 1, poly_degree + 1)  # polynomial degree - primal mesh
    pd = (pp[0] - 1, pp[1] - 1)  # polynomial degree - dual mesh

    orientation_inner = True
    outer = False
    # is_inner = False        # orientation of primal mesh
    """define mesh"""

    bounds_domain = ((0, 1), (0, 1))
    curvature = 0.0
    mesh1 = CrazyMesh(dim, element_layout, bounds_domain, curvature)

    # gamma = (gamma1, gamma2, gamma3, gamma4)
    # dgamma = (dgamma1, dgamma2, dgamma3, dgamma4)
    # mesh1 = TransfiniteMesh(dim, element_layout, gamma, dgamma)
    """define function spaces used in problem"""

    fs_2_lobatto = FunctionSpace(mesh1, '2-lobatto', pp, outer)
    fs_1_lobatto = FunctionSpace(mesh1, '1-lobatto', pp, outer)
    fs_0_gauss = FunctionSpace(mesh1, '0-gauss', pd, inner)

    fs_1_lobatto.dof_map.continous_dof = True  # continuous elements
    """define forms and quad grid"""
    """define (n) - source form"""
    f_source = Form(fs_2_lobatto)  # form for source term
    f_source.discretize(source)
    f_source.basis.quad_grid = 'gauss'
    """define (n-1) - q form"""
    f_flux = Form(fs_1_lobatto)  # form for flux terms
    f_flux.basis.quad_grid = 'lobatto'
    """define exact 0 - \phi form"""
    f_phi_exact = Form(fs_0_gauss)
    f_phi_exact.discretize(manufactured_solution)
    f_phi_exact.basis.quad_grid = 'gauss'
    """define unkown 0 - \phi form"""
    f_phi = Form(fs_0_gauss)
    f_phi.basis.quad_grid = 'gauss'
    """define  anisotropic tensor as a mesh property"""
    # anisotropic_tensor = MeshFunction(mesh1)
    # anisotropic_tensor.discrete_tensor = [
    #     k_11(element_layout), k_12(element_layout), k_22(element_layout)]
    # mesh function to inject the anisotropic tensor

    anisotropic_tensor = MeshFunction(mesh1)
    anisotropic_tensor.continous_tensor = [k_11, k_12, k_22]

    # mesh_k = MeshFunction(crazy_mesh)
    # mesh_k.continous_tensor = [diffusion_11, diffusion_12, diffusion_22]
    """define basis functions"""
    basis_2 = BasisForm(fs_2_lobatto)
    basis_1 = BasisForm(fs_1_lobatto)
    basis_0 = BasisForm(fs_0_gauss)

    basis_2.quad_grid = 'gauss'
    basis_1.quad_grid = 'lobatto'
    basis_0.quad_grid = 'gauss'
    """general variables used frequently"""
    num_total_elements = element_layout[0] * element_layout[1]
    num_total_edges = fs_1_lobatto.num_dof
    num_total_faces = fs_2_lobatto.num_dof
    num_local_surfaces = fs_2_lobatto.num_local_dof
    dof_map_lobatto_faces = fs_2_lobatto.dof_map.dof_map
    """define 1-form mass matrix"""

    M1 = inner(basis_1, basis_1, anisotropic_tensor)
    M1_assembled = assemble(M1, (fs_1_lobatto, fs_1_lobatto))
    """define the wedge product"""
    E21 = d_21_lobatto_outer(pp)
    W1 = basis_2.wedged(basis_0)

    W1_E21 = np.dot(W1, E21)
    W1_E21_local = np.repeat(W1_E21[:, :, np.newaxis],
                             num_total_elements,
                             axis=2)

    W1_E21_assembled = assemble(W1_E21_local, (fs_0_gauss, fs_1_lobatto))
    """assemble lhs"""
    lhs = sparse.bmat([[M1_assembled,
                        W1_E21_assembled.transpose()],
                       [W1_E21_assembled, None]]).tolil()

    # A = np.linalg.det(lhs.todense())
    # print(A)
    """assemble rhs"""
    rhs1 = np.zeros(num_total_edges)[:, np.newaxis]

    f_cochain_local = f_source.cochain_local[:, np.newaxis]
    W1_f_local = np.tensordot(W1, f_cochain_local, axes=1)
    rhs2 = assemble_cochain2(W1_f_local, dof_map_lobatto_faces,
                             num_total_faces)

    rhs = np.vstack((rhs1, rhs2))

    # print(time.time() - start_time)
    """implement boundary conditions"""
    """neuman boundary condition"""
    """dirichlet boundary condition"""
    """solve linear system of equations"""

    solution = sparse.linalg.spsolve(lhs.tocsc(), rhs)

    end_time = time.time()

    print("The total time taken by the program is : ", end_time - start_time)
    """l2 error"""
    """post processing / reconstruction"""
    eta_plot = xi_plot = xi = eta = np.linspace(-1, 1, 30)
    """reconstruct fluxes"""

    f_flux.cochain = solution[:fs_1_lobatto.num_dof]

    f_flux.reconstruct(xi, eta)
    (x_plot, y_plot), flux_x_plot, flux_y_plot = f_flux.export_to_plot()

    flux_x_plot, flux_y_plot = flux_y_plot, flux_x_plot
    """reconstruct potential"""

    f_phi.cochain = solution[fs_1_lobatto.num_dof:]
    f_phi.reconstruct(xi, eta)

    (x_plot, y_plot), phi_plot = f_phi.export_to_plot()

    phi_exact_plot = np.sin(2 * np.pi * x_plot) * np.sin(2 * np.pi * y_plot)
    """l2 - error in (div u -f)"""

    div_u_sum = np.zeros(num_total_elements)

    for ele_num in range(num_total_elements):
        l2_div_u = np.dot(E21, f_flux.cochain_local[:, ele_num]
                          )[:, np.newaxis] - f_cochain_local[:, :, ele_num]
        div_u_sum[ele_num] = np.sum(l2_div_u)

    l2_err_div_u = np.linalg.norm(div_u_sum)
    l_inf_err_div_u = np.max(div_u_sum)
    """l2 - error in phi and flux """

    l2_err_phi = f_phi.l_2_norm(phi_exact)
    l2_err_flux = f_flux.l_2_norm((flux_y_exact, flux_x_exact))

    error = l2_err_phi, l2_err_flux, l2_err_div_u, l_inf_err_div_u

    print(l2_err_phi[0])
    print(l2_err_flux[0])

    # return error

    #
    plt.figure(1)
    plt.contourf(x_plot, y_plot, flux_x_plot)
    plt.colorbar()
    #
    # plt.figure(2)
    # plt.contourf(x_plot, y_plot, flux_x_exact_plot)
    # plt.colorbar()

    # print(np.max(flux_x_exact_plot), np.min(flux_x_exact_plot))
    # print(np.max(flux_x_plot), np.min(flux_x_plot))
    #
    plt.figure(3)
    plt.contourf(x_plot, y_plot, flux_y_plot)
    plt.colorbar()
    #
    # plt.figure(4)
    # plt.contourf(x_plot, y_plot, flux_y_exact_plot)
    # plt.colorbar()

    # print(np.max(flux_y_exact_plot), np.min(flux_y_exact_plot))
    # print(np.max(flux_y_plot), np.min(flux_y_plot))
    #
    plt.figure(5)
    plt.contourf(x_plot, y_plot, phi_plot)
    plt.colorbar()

    # plt.figure(6)
    # plt.contourf(x_plot, y_plot, phi_exact_plot)
    # plt.colorbar()

    # print(np.max(phi_exact_plot), np.min(phi_exact_plot))
    # print(np.max(phi_plot), np.min(phi_plot))

    plt.show()
Esempio n. 6
0
import src.tests.path_magic
from mesh import CrazyMesh
from function_space import FunctionSpace
from coboundaries import d_21_lobatto_outer

if __name__ == '__main__':
    print("hello world")

# mesh arguments

dim = 2
elements_layout = (1, 1)
bounds_domain = ((-1, 1), (-1, 1))
curvature = 0.1

# function space arguments

form_type = '0-lobatto'
p = (3, 3)
is_inner = False
numbering_rule = 'general'


crazy_mesh = CrazyMesh(dim, elements_layout, bounds_domain, curvature)

function_space_2_lobatto = FunctionSpace(crazy_mesh, '2-lobatto', p, is_inner)
function_space_1_lobatto = FunctionSpace(crazy_mesh, '1-lobatto', p, is_inner)

E_21_lobatto_outer = d_21_lobatto_outer(p)