def addMetabolomicsReaction(model, metabolites, react_name, coefficient_str=1):
    print(react_name, ":", metabolites)
    # Build a reaction
    coefficient_str = str(coefficient_str)
    reaction_str = coefficient_str + (" + " + coefficient_str).join(
        metabolites) + " <==> " + react_name + "_c"
    reaction = Reaction(react_name)
    reaction.name = react_name
    reaction.subsystem = 'Metabolomics integration'
    # Add the reaction to the model
    model.add_reactions([reaction])
    reaction.build_reaction_from_string(reaction_str)
    #print(reaction,":::::",reaction_str)
    return reaction
Esempio n. 2
0
def parse_xml_into_model(xml, number=float):
    xml_model = xml.find(ns("sbml:model"))
    if get_attrib(xml_model, "fbc:strict") != "true":
        warn('loading SBML model without fbc:strict="true"')

    model_id = get_attrib(xml_model, "id")
    model = Model(model_id)
    model.name = xml_model.get("name")

    model.compartments = {c.get("id"): c.get("name") for c in
                          xml_model.findall(COMPARTMENT_XPATH)}
    # add metabolites
    for species in xml_model.findall(SPECIES_XPATH % 'false'):
        met = get_attrib(species, "id", require=True)
        met = Metabolite(clip(met, "M_"))
        met.name = species.get("name")
        annotate_cobra_from_sbml(met, species)
        met.compartment = species.get("compartment")
        met.charge = get_attrib(species, "fbc:charge", int)
        met.formula = get_attrib(species, "fbc:chemicalFormula")
        model.add_metabolites([met])
    # Detect boundary metabolites - In case they have been mistakenly
    # added. They should not actually appear in a model
    boundary_metabolites = {clip(i.get("id"), "M_")
                            for i in xml_model.findall(SPECIES_XPATH % 'true')}

    # add genes
    for sbml_gene in xml_model.iterfind(GENES_XPATH):
        gene_id = get_attrib(sbml_gene, "fbc:id").replace(SBML_DOT, ".")
        gene = Gene(clip(gene_id, "G_"))
        gene.name = get_attrib(sbml_gene, "fbc:name")
        if gene.name is None:
            gene.name = get_attrib(sbml_gene, "fbc:label")
        annotate_cobra_from_sbml(gene, sbml_gene)
        model.genes.append(gene)

    def process_gpr(sub_xml):
        """recursively convert gpr xml to a gpr string"""
        if sub_xml.tag == OR_TAG:
            return "( " + ' or '.join(process_gpr(i) for i in sub_xml) + " )"
        elif sub_xml.tag == AND_TAG:
            return "( " + ' and '.join(process_gpr(i) for i in sub_xml) + " )"
        elif sub_xml.tag == GENEREF_TAG:
            gene_id = get_attrib(sub_xml, "fbc:geneProduct", require=True)
            return clip(gene_id, "G_")
        else:
            raise Exception("unsupported tag " + sub_xml.tag)

    bounds = {bound.get("id"): get_attrib(bound, "value", type=number)
              for bound in xml_model.iterfind(BOUND_XPATH)}
    # add reactions
    reactions = []
    for sbml_reaction in xml_model.iterfind(
            ns("sbml:listOfReactions/sbml:reaction")):
        reaction = get_attrib(sbml_reaction, "id", require=True)
        reaction = Reaction(clip(reaction, "R_"))
        reaction.name = sbml_reaction.get("name")
        annotate_cobra_from_sbml(reaction, sbml_reaction)
        lb_id = get_attrib(sbml_reaction, "fbc:lowerFluxBound", require=True)
        ub_id = get_attrib(sbml_reaction, "fbc:upperFluxBound", require=True)
        try:
            reaction.upper_bound = bounds[ub_id]
            reaction.lower_bound = bounds[lb_id]
        except KeyError as e:
            raise CobraSBMLError("No constant bound with id '%s'" % str(e))
        reactions.append(reaction)

        stoichiometry = defaultdict(lambda: 0)
        for species_reference in sbml_reaction.findall(
                ns("sbml:listOfReactants/sbml:speciesReference")):
            met_name = clip(species_reference.get("species"), "M_")
            stoichiometry[met_name] -= \
                number(species_reference.get("stoichiometry"))
        for species_reference in sbml_reaction.findall(
                ns("sbml:listOfProducts/sbml:speciesReference")):
            met_name = clip(species_reference.get("species"), "M_")
            stoichiometry[met_name] += \
                get_attrib(species_reference, "stoichiometry",
                           type=number, require=True)
        # needs to have keys of metabolite objects, not ids
        object_stoichiometry = {}
        for met_id in stoichiometry:
            if met_id in boundary_metabolites:
                warn("Boundary metabolite '%s' used in reaction '%s'" %
                     (met_id, reaction.id))
                continue
            try:
                metabolite = model.metabolites.get_by_id(met_id)
            except KeyError:
                warn("ignoring unknown metabolite '%s' in reaction %s" %
                     (met_id, reaction.id))
                continue
            object_stoichiometry[metabolite] = stoichiometry[met_id]
        reaction.add_metabolites(object_stoichiometry)
        # set gene reaction rule
        gpr_xml = sbml_reaction.find(GPR_TAG)
        if gpr_xml is not None and len(gpr_xml) != 1:
            warn("ignoring invalid geneAssociation for " + repr(reaction))
            gpr_xml = None
        gpr = process_gpr(gpr_xml[0]) if gpr_xml is not None else ''
        # remove outside parenthesis, if any
        if gpr.startswith("(") and gpr.endswith(")"):
            gpr = gpr[1:-1].strip()
        gpr = gpr.replace(SBML_DOT, ".")
        reaction.gene_reaction_rule = gpr
    try:
        model.add_reactions(reactions)
    except ValueError as e:
        warn(str(e))

    # objective coefficients are handled after all reactions are added
    obj_list = xml_model.find(ns("fbc:listOfObjectives"))
    if obj_list is None:
        warn("listOfObjectives element not found")
        return model
    target_objective_id = get_attrib(obj_list, "fbc:activeObjective")
    target_objective = obj_list.find(
        ns("fbc:objective[@fbc:id='{}']".format(target_objective_id)))
    obj_direction_long = get_attrib(target_objective, "fbc:type")
    obj_direction = LONG_SHORT_DIRECTION[obj_direction_long]

    obj_query = OBJECTIVES_XPATH % target_objective_id
    coefficients = {}
    for sbml_objective in obj_list.findall(obj_query):
        rxn_id = clip(get_attrib(sbml_objective, "fbc:reaction"), "R_")
        try:
            objective_reaction = model.reactions.get_by_id(rxn_id)
        except KeyError:
            raise CobraSBMLError("Objective reaction '%s' not found" % rxn_id)
        try:
            coefficients[objective_reaction] = get_attrib(
                sbml_objective, "fbc:coefficient", type=number)
        except ValueError as e:
            warn(str(e))
    set_objective(model, coefficients)
    model.solver.objective.direction = obj_direction
    return model
Esempio n. 3
0
def create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False,
                                      legacy_metabolite=False,
                                      print_time=False, use_hyphens=False):
    """convert an SBML XML file into a cobra.Model object.

    Supports SBML Level 2 Versions 1 and 4.  The function will detect if the
    SBML fbc package is used in the file and run the converter if the fbc
    package is used.

    Parameters
    ----------
    sbml_filename: string
    old_sbml: bool
        Set to True if the XML file has metabolite formula appended to
        metabolite names. This was a poorly designed artifact that persists in
        some models.
    legacy_metabolite: bool
        If True then assume that the metabolite id has the compartment id
         appended after an underscore (e.g. _c for cytosol). This has not been
         implemented but will be soon.
    print_time: bool
         deprecated
    use_hyphens: bool
        If True, double underscores (__) in an SBML ID will be converted to
        hyphens

    Returns
    -------
    Model : The parsed cobra model
    """
    if not libsbml:
        raise ImportError('create_cobra_model_from_sbml_file '
                          'requires python-libsbml')

    __default_lower_bound = -1000
    __default_upper_bound = 1000
    __default_objective_coefficient = 0
    # Ensure that the file exists
    if not isfile(sbml_filename):
        raise IOError('Your SBML file is not found: %s' % sbml_filename)
    # Expressions to change SBML Ids to Palsson Lab Ids
    metabolite_re = re.compile('^M_')
    reaction_re = re.compile('^R_')
    compartment_re = re.compile('^C_')
    if print_time:
        warn("print_time is deprecated", DeprecationWarning)
    model_doc = libsbml.readSBML(sbml_filename)
    if model_doc.getPlugin("fbc") is not None:
        from libsbml import ConversionProperties, LIBSBML_OPERATION_SUCCESS
        conversion_properties = ConversionProperties()
        conversion_properties.addOption(
            "convert fbc to cobra", True, "Convert FBC model to Cobra model")
        result = model_doc.convert(conversion_properties)
        if result != LIBSBML_OPERATION_SUCCESS:
            raise Exception("Conversion of SBML+fbc to COBRA failed")
    sbml_model = model_doc.getModel()
    sbml_model_id = sbml_model.getId()
    sbml_species = sbml_model.getListOfSpecies()
    sbml_reactions = sbml_model.getListOfReactions()
    sbml_compartments = sbml_model.getListOfCompartments()
    compartment_dict = dict([(compartment_re.split(x.getId())[-1], x.getName())
                             for x in sbml_compartments])
    if legacy_metabolite:
        # Deal with the palsson lab appending the compartment id to the
        # metabolite id
        new_dict = {}
        for the_id, the_name in compartment_dict.items():
            if the_name == '':
                new_dict[the_id[0].lower()] = the_id
            else:
                new_dict[the_id] = the_name
        compartment_dict = new_dict
        legacy_compartment_converter = dict(
            [(v, k) for k, v in iteritems(compartment_dict)])

    cobra_model = Model(sbml_model_id)
    metabolites = []
    metabolite_dict = {}
    # Convert sbml_metabolites to cobra.Metabolites
    for sbml_metabolite in sbml_species:
        # Skip sbml boundary species
        if sbml_metabolite.getBoundaryCondition():
            continue

        if (old_sbml or legacy_metabolite) and \
                sbml_metabolite.getId().endswith('_b'):
            # Deal with incorrect sbml from bigg.ucsd.edu
            continue
        tmp_metabolite = Metabolite()
        metabolite_id = tmp_metabolite.id = sbml_metabolite.getId()
        tmp_metabolite.compartment = compartment_re.split(
            sbml_metabolite.getCompartment())[-1]
        if legacy_metabolite:
            if tmp_metabolite.compartment not in compartment_dict:
                tmp_metabolite.compartment = legacy_compartment_converter[
                    tmp_metabolite.compartment]
            tmp_metabolite.id = parse_legacy_id(
                tmp_metabolite.id, tmp_metabolite.compartment,
                use_hyphens=use_hyphens)
        if use_hyphens:
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('__', '-')
        else:
            # Just in case the SBML ids are ill-formed and use -
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('-', '__')
        tmp_metabolite.name = sbml_metabolite.getName()
        tmp_formula = ''
        tmp_metabolite.notes = parse_legacy_sbml_notes(
            sbml_metabolite.getNotesString())
        if sbml_metabolite.isSetCharge():
            tmp_metabolite.charge = sbml_metabolite.getCharge()
        if "CHARGE" in tmp_metabolite.notes:
            note_charge = tmp_metabolite.notes["CHARGE"][0]
            try:
                note_charge = float(note_charge)
                if note_charge == int(note_charge):
                    note_charge = int(note_charge)
            except:
                warn("charge of %s is not a number (%s)" %
                     (tmp_metabolite.id, str(note_charge)))
            else:
                if ((tmp_metabolite.charge is None) or
                        (tmp_metabolite.charge == note_charge)):
                    tmp_metabolite.notes.pop("CHARGE")
                    # set charge to the one from notes if not assigend before
                    # the same
                    tmp_metabolite.charge = note_charge
                else:  # tmp_metabolite.charge != note_charge
                    msg = "different charges specified for %s (%d and %d)"
                    msg = msg % (tmp_metabolite.id,
                                 tmp_metabolite.charge, note_charge)
                    warn(msg)
                    # Chances are a 0 note charge was written by mistake. We
                    # will default to the note_charge in this case.
                    if tmp_metabolite.charge == 0:
                        tmp_metabolite.charge = note_charge

        for the_key in tmp_metabolite.notes.keys():
            if the_key.lower() == 'formula':
                tmp_formula = tmp_metabolite.notes.pop(the_key)[0]
                break
        if tmp_formula == '' and old_sbml:
            tmp_formula = tmp_metabolite.name.split('_')[-1]
            tmp_metabolite.name = tmp_metabolite.name[:-len(tmp_formula) - 1]
        tmp_metabolite.formula = tmp_formula
        metabolite_dict.update({metabolite_id: tmp_metabolite})
        metabolites.append(tmp_metabolite)
    cobra_model.add_metabolites(metabolites)

    # Construct the vectors and matrices for holding connectivity and numerical
    # info to feed to the cobra toolbox.
    # Always assume steady state simulations so b is set to 0
    cobra_reaction_list = []
    coefficients = {}
    for sbml_reaction in sbml_reactions:
        if use_hyphens:
            # Change the ids to match conventions used by the Palsson lab.
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('__', '-'))
        else:
            # Just in case the SBML ids are ill-formed and use -
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('-', '__'))
        cobra_reaction_list.append(reaction)
        # reaction.exchange_reaction = 0
        reaction.name = sbml_reaction.getName()
        cobra_metabolites = {}
        # Use the cobra.Metabolite class here
        for sbml_metabolite in sbml_reaction.getListOfReactants():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                cobra_metabolites[tmp_metabolite] = - \
                    sbml_metabolite.getStoichiometry()
        for sbml_metabolite in sbml_reaction.getListOfProducts():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                # Handle the case where the metabolite was specified both
                # as a reactant and as a product.
                if tmp_metabolite in cobra_metabolites:
                    warn("%s appears as a reactant and product %s" %
                         (tmp_metabolite_id, reaction.id))
                    cobra_metabolites[
                        tmp_metabolite] += sbml_metabolite.getStoichiometry()
                    # if the combined stoichiometry is 0, remove the metabolite
                    if cobra_metabolites[tmp_metabolite] == 0:
                        cobra_metabolites.pop(tmp_metabolite)
                else:
                    cobra_metabolites[
                        tmp_metabolite] = sbml_metabolite.getStoichiometry()
        # check for nan
        for met, v in iteritems(cobra_metabolites):
            if isnan(v) or isinf(v):
                warn("invalid value %s for metabolite '%s' in reaction '%s'" %
                     (str(v), met.id, reaction.id))
        reaction.add_metabolites(cobra_metabolites)
        # Parse the kinetic law info here.
        parameter_dict = {}
        # If lower and upper bounds are specified in the Kinetic Law then
        # they override the sbml reversible attribute.  If they are not
        # specified then the bounds are determined by getReversible.
        if not sbml_reaction.getKineticLaw():

            if sbml_reaction.getReversible():
                parameter_dict['lower_bound'] = __default_lower_bound
                parameter_dict['upper_bound'] = __default_upper_bound
            else:
                # Assume that irreversible reactions only proceed from left to
                # right.
                parameter_dict['lower_bound'] = 0
                parameter_dict['upper_bound'] = __default_upper_bound

            parameter_dict[
                'objective_coefficient'] = __default_objective_coefficient
        else:
            for sbml_parameter in \
                    sbml_reaction.getKineticLaw().getListOfParameters():
                parameter_dict[
                    sbml_parameter.getId().lower()] = sbml_parameter.getValue()

        if 'lower_bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower_bound']
        elif 'lower bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower bound']
        elif sbml_reaction.getReversible():
            reaction.lower_bound = __default_lower_bound
        else:
            reaction.lower_bound = 0

        if 'upper_bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper_bound']
        elif 'upper bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper bound']
        else:
            reaction.upper_bound = __default_upper_bound

        objective_coefficient = parameter_dict.get(
            'objective_coefficient', parameter_dict.get(
                'objective_coefficient', __default_objective_coefficient))
        if objective_coefficient != 0:
            coefficients[reaction] = objective_coefficient

        # ensure values are not set to nan or inf
        if isnan(reaction.lower_bound) or isinf(reaction.lower_bound):
            reaction.lower_bound = __default_lower_bound
        if isnan(reaction.upper_bound) or isinf(reaction.upper_bound):
            reaction.upper_bound = __default_upper_bound

        reaction_note_dict = parse_legacy_sbml_notes(
            sbml_reaction.getNotesString())
        # Parse the reaction notes.
        # POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A
        # STANDARD FORMAT
        # TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix.
        # TODO: Make sure genes get added as objects
        if 'GENE ASSOCIATION' in reaction_note_dict:
            rule = reaction_note_dict['GENE ASSOCIATION'][0]
            try:
                rule.encode('ascii')
            except (UnicodeEncodeError, UnicodeDecodeError):
                warn("gene_reaction_rule '%s' is not ascii compliant" % rule)
            if rule.startswith("&quot;") and rule.endswith("&quot;"):
                rule = rule[6:-6]
            reaction.gene_reaction_rule = rule
            if 'GENE LIST' in reaction_note_dict:
                reaction.systematic_names = reaction_note_dict['GENE LIST'][0]
            elif ('GENES' in reaction_note_dict and
                  reaction_note_dict['GENES'] != ['']):
                reaction.systematic_names = reaction_note_dict['GENES'][0]
            elif 'LOCUS' in reaction_note_dict:
                gene_id_to_object = dict([(x.id, x) for x in reaction._genes])
                for the_row in reaction_note_dict['LOCUS']:
                    tmp_row_dict = {}
                    the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#')
                    for the_item in the_row.split('#'):
                        k, v = the_item.split(':')
                        tmp_row_dict[k] = v
                    tmp_locus_id = tmp_row_dict['LOCUS']
                    if 'TRANSCRIPT' in tmp_row_dict:
                        tmp_locus_id = tmp_locus_id + \
                                       '.' + tmp_row_dict['TRANSCRIPT']

                    if 'ABBREVIATION' in tmp_row_dict:
                        gene_id_to_object[tmp_locus_id].name = tmp_row_dict[
                            'ABBREVIATION']

        if 'SUBSYSTEM' in reaction_note_dict:
            reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0]

        reaction.notes = reaction_note_dict

    # Now, add all of the reactions to the model.
    cobra_model.id = sbml_model.getId()
    # Populate the compartment list - This will be done based on
    # cobra.Metabolites in cobra.Reactions in the future.
    cobra_model.compartments = compartment_dict

    cobra_model.add_reactions(cobra_reaction_list)
    set_objective(cobra_model, coefficients)
    return cobra_model
Esempio n. 4
0
def test_iterative_gapfill_from_binary_phenotypes():
    # load the universal model and a test model
    universal = load_universal_modelseed()
    model = load_modelseed_model('Staphylococcus aureus')

    # Load the biolog composition to be used for gapfilling
    biolog_base_composition = pd.read_csv(
        './medusa/test/data/biolog_base_composition.csv', sep=',')
    biolog_base_dict = dict(zip(biolog_base_composition['ID'],\
                              [1000 for i in range(0,len(biolog_base_composition['ID']))]))
    biolog_thresholded = pd.read_csv(
        './medusa/test/data/plata_thresholded.csv', sep='\t', index_col=0)

    # extract the biolog conditions for Staphylococcus aureus
    test_mod_pheno = biolog_thresholded.loc['Staphylococcus aureus']
    test_mod_pheno = list(test_mod_pheno[test_mod_pheno == True].index)

    # check for biolog base components in the model
    add_mets = []
    add_exchanges = []
    for met in list(biolog_base_dict.keys()):
        try:
            model.metabolites.get_by_id(met)
        except:
            print('no ' + met)
            add_met = universal.metabolites.get_by_id(met).copy()
            add_mets.append(add_met)

    model.add_metabolites(add_mets)

    for met in list(biolog_base_dict.keys()):
        # Search for exchange reactions
        try:
            model.reactions.get_by_id('EX_' + met)
        except:
            add_met = model.metabolites.get_by_id(met)
            ex_rxn = Reaction('EX_' + met)
            ex_rxn.name = "Exchange reaction for " + met
            ex_rxn.lower_bound = -1000
            ex_rxn.upper_bound = 1000
            ex_rxn.add_metabolites({add_met: -1})
            add_exchanges.append(ex_rxn)

    model.add_reactions(add_exchanges)

    # Find metabolites from the biolog data that are missing in the test model
    # and add them from the universal
    missing_mets = []
    missing_exchanges = []
    media_dicts = {}
    for met_id in test_mod_pheno:
        try:
            model.metabolites.get_by_id(met_id)
        except:
            print(met_id +
                  " was not in model, adding met and exchange reaction")
            met = universal.metabolites.get_by_id(met_id).copy()
            missing_mets.append(met)
            ex_rxn = Reaction('EX_' + met_id)
            ex_rxn.name = "Exchange reaction for " + met_id
            ex_rxn.lower_bound = -1000
            ex_rxn.upper_bound = 1000
            ex_rxn.add_metabolites({met: -1})
            missing_exchanges.append(ex_rxn)
        media_dicts[met_id] = biolog_base_dict.copy()
        media_dicts[met_id] = {
            'EX_' + k: v
            for k, v in media_dicts[met_id].items()
        }
        media_dicts[met_id]['EX_' + met_id] = 1000
    model.add_metabolites(missing_mets)
    model.add_reactions(missing_exchanges)

    # identify transporters for each biolog component in the universal model
    # and pick one that will enable transport in the gapfilling problem.
    transporters_in_universal = [
        rxn for rxn in universal.reactions if len(rxn.compartments) > 1
    ]
    for met in media_dicts.keys():
        metabolite = model.metabolites.get_by_id(met)
        base_met_id = met.split('_')[0]
        rxns_with_metabolite = metabolite.reactions
        transport = False
        for rxn in rxns_with_metabolite:
            metabolites = [met_in_rxn.id for met_in_rxn in rxn.metabolites]
            if (base_met_id + '_e' in metabolites
                    and base_met_id + '_c' in metabolites):
                transport = True

        pick_transporter = {}
        if not transport:
            print("missing transporter for " + metabolite.name)
            for rxn in transporters_in_universal:
                metabolites = [met_in_rxn.id for met_in_rxn in rxn.metabolites]
                if (base_met_id + '_e' in metabolites
                        and base_met_id + '_c' in metabolites):
                    pick_transporter[met] = rxn.id

    # Add the transporters to the model
    transporters_to_add = list(pick_transporter.values())
    transporter_list = []
    for rxn in transporters_to_add:
        transporter_list.append(universal.reactions.get_by_id(rxn).copy())
    model.add_reactions(transporter_list)

    # remove the added transporters from the universal model
    universal.remove_reactions(
        [universal.reactions.get_by_id(rxn) for rxn in transporters_to_add])

    # select a subset of the biolog conditions to perform gapfilling with
    sources = list(media_dicts.keys())
    sub_dict = {
        sources[0]: media_dicts[sources[0]],
        sources[1]: media_dicts[sources[1]],
        sources[2]: media_dicts[sources[2]],
        sources[3]: media_dicts[sources[3]],
        sources[4]: media_dicts[sources[4]]
    }

    num_cycles = 5
    lower_bound = 0.05
    flux_cutoff = 1E-10
    ensemble = expand.iterative_gapfill_from_binary_phenotypes(model,universal,sub_dict,num_cycles,\
                                         lower_bound=lower_bound,\
                                         inclusion_threshold=1E-10,\
                                         exchange_reactions=False,\
                                         demand_reactions=False,\
                                         exchange_prefix='EX')

    # the number of models in the ensemble should equal the number of cycles
    # unless a duplicate solution was found; for this test case, this seems
    # to happen ~25% of the time, so we'll loosen the restriction.
    assert len(ensemble.members) > num_cycles / 2
    # each member of the ensemble should be able to produce biomass in each
    # biolog condition
    ex_rxns = [rxn for rxn in ensemble.base_model.reactions \
                        if rxn.id.startswith('EX_')]
    for source in sub_dict.keys():
        # close all exchange reactions
        for rxn in ex_rxns:
            rxn.lower_bound = 0
        ensemble.base_model.medium = sub_dict[source]
        for member in ensemble.members:
            ensemble.set_state(member)
            # member should produce the minimum amount of required biomass
            # flux or more
            assert ensemble.base_model.slim_optimize() > lower_bound * 0.99
Esempio n. 5
0
def from_mat_struct(mat_struct, model_id=None, inf=inf):
    """create a model from the COBRA toolbox struct

    The struct will be a dict read in by scipy.io.loadmat

    """
    m = mat_struct
    if m.dtype.names is None:
        raise ValueError("not a valid mat struct")
    if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names):
        raise ValueError("not a valid mat struct")
    if "c" in m.dtype.names:
        c_vec = m["c"][0, 0]
    else:
        c_vec = None
        warn("objective vector 'c' not found")
    model = Model()
    if model_id is not None:
        model.id = model_id
    elif "description" in m.dtype.names:
        description = m["description"][0, 0][0]
        if not isinstance(description, string_types) and len(description) > 1:
            model.id = description[0]
            warn("Several IDs detected, only using the first.")
        else:
            model.id = description
    else:
        model.id = "imported_model"
    for i, name in enumerate(m["mets"][0, 0]):
        new_metabolite = Metabolite()
        new_metabolite.id = str(name[0][0])
        if all(var in m.dtype.names
               for var in ['metComps', 'comps', 'compNames']):
            comp_index = m["metComps"][0, 0][i][0] - 1
            new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0]
            if new_metabolite.compartment not in model.compartments:
                comp_name = m['compNames'][0, 0][comp_index][0][0]
                model.compartments[new_metabolite.compartment] = comp_name
        else:
            new_metabolite.compartment = _get_id_compartment(new_metabolite.id)
            if new_metabolite.compartment not in model.compartments:
                model.compartments[
                    new_metabolite.compartment] = new_metabolite.compartment
        try:
            new_metabolite.name = str(m["metNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.charge = float(m["metCharge"][0, 0][i][0])
            int_charge = int(new_metabolite.charge)
            if new_metabolite.charge == int_charge:
                new_metabolite.charge = int_charge
        except (IndexError, ValueError):
            pass
        model.add_metabolites([new_metabolite])
    new_reactions = []
    coefficients = {}
    for i, name in enumerate(m["rxns"][0, 0]):
        new_reaction = Reaction()
        new_reaction.id = str(name[0][0])
        new_reaction.lower_bound = float(m["lb"][0, 0][i][0])
        new_reaction.upper_bound = float(m["ub"][0, 0][i][0])
        if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0:
            new_reaction.lower_bound = -inf
        if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0:
            new_reaction.upper_bound = inf
        if c_vec is not None:
            coefficients[new_reaction] = float(c_vec[i][0])
        try:
            new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.name = str(m["rxnNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        new_reactions.append(new_reaction)
    model.add_reactions(new_reactions)
    set_objective(model, coefficients)
    coo = scipy_sparse.coo_matrix(m["S"][0, 0])
    for i, j, v in zip(coo.row, coo.col, coo.data):
        model.reactions[j].add_metabolites({model.metabolites[i]: v})
    return model
Esempio n. 6
0
def create_cobra_model_from_sbml_file(sbml_filename, old_sbml=False,
                                      legacy_metabolite=False,
                                      print_time=False, use_hyphens=False):
    """convert an SBML XML file into a cobra.Model object.

    Supports SBML Level 2 Versions 1 and 4.  The function will detect if the
    SBML fbc package is used in the file and run the converter if the fbc
    package is used.

    Parameters
    ----------
    sbml_filename: string
    old_sbml: bool
        Set to True if the XML file has metabolite formula appended to
        metabolite names. This was a poorly designed artifact that persists in
        some models.
    legacy_metabolite: bool
        If True then assume that the metabolite id has the compartment id
         appended after an underscore (e.g. _c for cytosol). This has not been
         implemented but will be soon.
    print_time: bool
         deprecated
    use_hyphens: bool
        If True, double underscores (__) in an SBML ID will be converted to
        hyphens

    Returns
    -------
    Model : The parsed cobra model
    """
    if not libsbml:
        raise ImportError('create_cobra_model_from_sbml_file '
                          'requires python-libsbml')

    __default_lower_bound = -1000
    __default_upper_bound = 1000
    __default_objective_coefficient = 0
    # Ensure that the file exists
    if not isfile(sbml_filename):
        raise IOError('Your SBML file is not found: %s' % sbml_filename)
    # Expressions to change SBML Ids to Palsson Lab Ids
    metabolite_re = re.compile('^M_')
    reaction_re = re.compile('^R_')
    compartment_re = re.compile('^C_')
    if print_time:
        warn("print_time is deprecated", DeprecationWarning)
    model_doc = libsbml.readSBML(sbml_filename)
    if model_doc.getPlugin("fbc") is not None:
        from libsbml import ConversionProperties, LIBSBML_OPERATION_SUCCESS
        conversion_properties = ConversionProperties()
        conversion_properties.addOption(
            "convert fbc to cobra", True, "Convert FBC model to Cobra model")
        result = model_doc.convert(conversion_properties)
        if result != LIBSBML_OPERATION_SUCCESS:
            raise Exception("Conversion of SBML+fbc to COBRA failed")
    sbml_model = model_doc.getModel()
    sbml_model_id = sbml_model.getId()
    sbml_species = sbml_model.getListOfSpecies()
    sbml_reactions = sbml_model.getListOfReactions()
    sbml_compartments = sbml_model.getListOfCompartments()
    compartment_dict = dict([(compartment_re.split(x.getId())[-1], x.getName())
                             for x in sbml_compartments])
    if legacy_metabolite:
        # Deal with the palsson lab appending the compartment id to the
        # metabolite id
        new_dict = {}
        for the_id, the_name in compartment_dict.items():
            if the_name == '':
                new_dict[the_id[0].lower()] = the_id
            else:
                new_dict[the_id] = the_name
        compartment_dict = new_dict
        legacy_compartment_converter = dict(
            [(v, k) for k, v in iteritems(compartment_dict)])

    cobra_model = Model(sbml_model_id)
    metabolites = []
    metabolite_dict = {}
    # Convert sbml_metabolites to cobra.Metabolites
    for sbml_metabolite in sbml_species:
        # Skip sbml boundary species
        if sbml_metabolite.getBoundaryCondition():
            continue

        if (old_sbml or legacy_metabolite) and \
                sbml_metabolite.getId().endswith('_b'):
            # Deal with incorrect sbml from bigg.ucsd.edu
            continue
        tmp_metabolite = Metabolite()
        metabolite_id = tmp_metabolite.id = sbml_metabolite.getId()
        tmp_metabolite.compartment = compartment_re.split(
            sbml_metabolite.getCompartment())[-1]
        if legacy_metabolite:
            if tmp_metabolite.compartment not in compartment_dict:
                tmp_metabolite.compartment = legacy_compartment_converter[
                    tmp_metabolite.compartment]
            tmp_metabolite.id = parse_legacy_id(
                tmp_metabolite.id, tmp_metabolite.compartment,
                use_hyphens=use_hyphens)
        if use_hyphens:
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('__', '-')
        else:
            # Just in case the SBML ids are ill-formed and use -
            tmp_metabolite.id = metabolite_re.split(
                tmp_metabolite.id)[-1].replace('-', '__')
        tmp_metabolite.name = sbml_metabolite.getName()
        tmp_formula = ''
        tmp_metabolite.notes = parse_legacy_sbml_notes(
            sbml_metabolite.getNotesString())
        if sbml_metabolite.isSetCharge():
            tmp_metabolite.charge = sbml_metabolite.getCharge()
        if "CHARGE" in tmp_metabolite.notes:
            note_charge = tmp_metabolite.notes["CHARGE"][0]
            try:
                note_charge = float(note_charge)
                if note_charge == int(note_charge):
                    note_charge = int(note_charge)
            except:
                warn("charge of %s is not a number (%s)" %
                     (tmp_metabolite.id, str(note_charge)))
            else:
                if ((tmp_metabolite.charge is None) or
                        (tmp_metabolite.charge == note_charge)):
                    tmp_metabolite.notes.pop("CHARGE")
                    # set charge to the one from notes if not assigend before
                    # the same
                    tmp_metabolite.charge = note_charge
                else:  # tmp_metabolite.charge != note_charge
                    msg = "different charges specified for %s (%d and %d)"
                    msg = msg % (tmp_metabolite.id,
                                 tmp_metabolite.charge, note_charge)
                    warn(msg)
                    # Chances are a 0 note charge was written by mistake. We
                    # will default to the note_charge in this case.
                    if tmp_metabolite.charge == 0:
                        tmp_metabolite.charge = note_charge

        for the_key in tmp_metabolite.notes.keys():
            if the_key.lower() == 'formula':
                tmp_formula = tmp_metabolite.notes.pop(the_key)[0]
                break
        if tmp_formula == '' and old_sbml:
            tmp_formula = tmp_metabolite.name.split('_')[-1]
            tmp_metabolite.name = tmp_metabolite.name[:-len(tmp_formula) - 1]
        tmp_metabolite.formula = tmp_formula
        metabolite_dict.update({metabolite_id: tmp_metabolite})
        metabolites.append(tmp_metabolite)
    cobra_model.add_metabolites(metabolites)

    # Construct the vectors and matrices for holding connectivity and numerical
    # info to feed to the cobra toolbox.
    # Always assume steady state simulations so b is set to 0
    cobra_reaction_list = []
    coefficients = {}
    for sbml_reaction in sbml_reactions:
        if use_hyphens:
            # Change the ids to match conventions used by the Palsson lab.
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('__', '-'))
        else:
            # Just in case the SBML ids are ill-formed and use -
            reaction = Reaction(reaction_re.split(
                sbml_reaction.getId())[-1].replace('-', '__'))
        cobra_reaction_list.append(reaction)
        # reaction.exchange_reaction = 0
        reaction.name = sbml_reaction.getName()
        cobra_metabolites = {}
        # Use the cobra.Metabolite class here
        for sbml_metabolite in sbml_reaction.getListOfReactants():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                cobra_metabolites[tmp_metabolite] = - \
                    sbml_metabolite.getStoichiometry()
        for sbml_metabolite in sbml_reaction.getListOfProducts():
            tmp_metabolite_id = sbml_metabolite.getSpecies()
            # This deals with boundary metabolites
            if tmp_metabolite_id in metabolite_dict:
                tmp_metabolite = metabolite_dict[tmp_metabolite_id]
                # Handle the case where the metabolite was specified both
                # as a reactant and as a product.
                if tmp_metabolite in cobra_metabolites:
                    warn("%s appears as a reactant and product %s" %
                         (tmp_metabolite_id, reaction.id))
                    cobra_metabolites[
                        tmp_metabolite] += sbml_metabolite.getStoichiometry()
                    # if the combined stoichiometry is 0, remove the metabolite
                    if cobra_metabolites[tmp_metabolite] == 0:
                        cobra_metabolites.pop(tmp_metabolite)
                else:
                    cobra_metabolites[
                        tmp_metabolite] = sbml_metabolite.getStoichiometry()
        # check for nan
        for met, v in iteritems(cobra_metabolites):
            if isnan(v) or isinf(v):
                warn("invalid value %s for metabolite '%s' in reaction '%s'" %
                     (str(v), met.id, reaction.id))
        reaction.add_metabolites(cobra_metabolites)
        # Parse the kinetic law info here.
        parameter_dict = {}
        # If lower and upper bounds are specified in the Kinetic Law then
        # they override the sbml reversible attribute.  If they are not
        # specified then the bounds are determined by getReversible.
        if not sbml_reaction.getKineticLaw():

            if sbml_reaction.getReversible():
                parameter_dict['lower_bound'] = __default_lower_bound
                parameter_dict['upper_bound'] = __default_upper_bound
            else:
                # Assume that irreversible reactions only proceed from left to
                # right.
                parameter_dict['lower_bound'] = 0
                parameter_dict['upper_bound'] = __default_upper_bound

            parameter_dict[
                'objective_coefficient'] = __default_objective_coefficient
        else:
            for sbml_parameter in \
                    sbml_reaction.getKineticLaw().getListOfParameters():
                parameter_dict[
                    sbml_parameter.getId().lower()] = sbml_parameter.getValue()

        if 'lower_bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower_bound']
        elif 'lower bound' in parameter_dict:
            reaction.lower_bound = parameter_dict['lower bound']
        elif sbml_reaction.getReversible():
            reaction.lower_bound = __default_lower_bound
        else:
            reaction.lower_bound = 0

        if 'upper_bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper_bound']
        elif 'upper bound' in parameter_dict:
            reaction.upper_bound = parameter_dict['upper bound']
        else:
            reaction.upper_bound = __default_upper_bound

        objective_coefficient = parameter_dict.get(
            'objective_coefficient', parameter_dict.get(
                'objective_coefficient', __default_objective_coefficient))
        if objective_coefficient != 0:
            coefficients[reaction] = objective_coefficient

        # ensure values are not set to nan or inf
        if isnan(reaction.lower_bound) or isinf(reaction.lower_bound):
            reaction.lower_bound = __default_lower_bound
        if isnan(reaction.upper_bound) or isinf(reaction.upper_bound):
            reaction.upper_bound = __default_upper_bound

        reaction_note_dict = parse_legacy_sbml_notes(
            sbml_reaction.getNotesString())
        # Parse the reaction notes.
        # POTENTIAL BUG: DEALING WITH LEGACY 'SBML' THAT IS NOT IN A
        # STANDARD FORMAT
        # TODO: READ IN OTHER NOTES AND GIVE THEM A reaction_ prefix.
        # TODO: Make sure genes get added as objects
        if 'GENE ASSOCIATION' in reaction_note_dict:
            rule = reaction_note_dict['GENE ASSOCIATION'][0]
            try:
                rule.encode('ascii')
            except (UnicodeEncodeError, UnicodeDecodeError):
                warn("gene_reaction_rule '%s' is not ascii compliant" % rule)
            if rule.startswith("&quot;") and rule.endswith("&quot;"):
                rule = rule[6:-6]
            reaction.gene_reaction_rule = rule
            if 'GENE LIST' in reaction_note_dict:
                reaction.systematic_names = reaction_note_dict['GENE LIST'][0]
            elif ('GENES' in reaction_note_dict and
                  reaction_note_dict['GENES'] != ['']):
                reaction.systematic_names = reaction_note_dict['GENES'][0]
            elif 'LOCUS' in reaction_note_dict:
                gene_id_to_object = dict([(x.id, x) for x in reaction._genes])
                for the_row in reaction_note_dict['LOCUS']:
                    tmp_row_dict = {}
                    the_row = 'LOCUS:' + the_row.lstrip('_').rstrip('#')
                    for the_item in the_row.split('#'):
                        k, v = the_item.split(':')
                        tmp_row_dict[k] = v
                    tmp_locus_id = tmp_row_dict['LOCUS']
                    if 'TRANSCRIPT' in tmp_row_dict:
                        tmp_locus_id = tmp_locus_id + \
                                       '.' + tmp_row_dict['TRANSCRIPT']

                    if 'ABBREVIATION' in tmp_row_dict:
                        gene_id_to_object[tmp_locus_id].name = tmp_row_dict[
                            'ABBREVIATION']

        if 'SUBSYSTEM' in reaction_note_dict:
            reaction.subsystem = reaction_note_dict.pop('SUBSYSTEM')[0]

        reaction.notes = reaction_note_dict

    # Now, add all of the reactions to the model.
    cobra_model.id = sbml_model.getId()
    # Populate the compartment list - This will be done based on
    # cobra.Metabolites in cobra.Reactions in the future.
    cobra_model.compartments = compartment_dict

    cobra_model.add_reactions(cobra_reaction_list)
    set_objective(cobra_model, coefficients)
    return cobra_model
Esempio n. 7
0
def from_mat_struct(mat_struct, model_id=None, inf=inf):
    """create a model from the COBRA toolbox struct

    The struct will be a dict read in by scipy.io.loadmat

    """
    m = mat_struct
    if m.dtype.names is None:
        raise ValueError("not a valid mat struct")
    if not {"rxns", "mets", "S", "lb", "ub"} <= set(m.dtype.names):
        raise ValueError("not a valid mat struct")
    if "c" in m.dtype.names:
        c_vec = m["c"][0, 0]
    else:
        c_vec = None
        warn("objective vector 'c' not found")
    model = Model()
    if model_id is not None:
        model.id = model_id
    elif "description" in m.dtype.names:
        description = m["description"][0, 0][0]
        if not isinstance(description, string_types) and len(description) > 1:
            model.id = description[0]
            warn("Several IDs detected, only using the first.")
        else:
            model.id = description
    else:
        model.id = "imported_model"
    for i, name in enumerate(m["mets"][0, 0]):
        new_metabolite = Metabolite()
        new_metabolite.id = str(name[0][0])
        if all(var in m.dtype.names for var in
               ['metComps', 'comps', 'compNames']):
            comp_index = m["metComps"][0, 0][i][0] - 1
            new_metabolite.compartment = m['comps'][0, 0][comp_index][0][0]
            if new_metabolite.compartment not in model.compartments:
                comp_name = m['compNames'][0, 0][comp_index][0][0]
                model.compartments[new_metabolite.compartment] = comp_name
        else:
            new_metabolite.compartment = _get_id_compartment(new_metabolite.id)
            if new_metabolite.compartment not in model.compartments:
                model.compartments[
                    new_metabolite.compartment] = new_metabolite.compartment
        try:
            new_metabolite.name = str(m["metNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.formula = str(m["metFormulas"][0][0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_metabolite.charge = float(m["metCharge"][0, 0][i][0])
            int_charge = int(new_metabolite.charge)
            if new_metabolite.charge == int_charge:
                new_metabolite.charge = int_charge
        except (IndexError, ValueError):
            pass
        model.add_metabolites([new_metabolite])
    new_reactions = []
    coefficients = {}
    for i, name in enumerate(m["rxns"][0, 0]):
        new_reaction = Reaction()
        new_reaction.id = str(name[0][0])
        new_reaction.lower_bound = float(m["lb"][0, 0][i][0])
        new_reaction.upper_bound = float(m["ub"][0, 0][i][0])
        if isinf(new_reaction.lower_bound) and new_reaction.lower_bound < 0:
            new_reaction.lower_bound = -inf
        if isinf(new_reaction.upper_bound) and new_reaction.upper_bound > 0:
            new_reaction.upper_bound = inf
        if c_vec is not None:
            coefficients[new_reaction] = float(c_vec[i][0])
        try:
            new_reaction.gene_reaction_rule = str(m['grRules'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.name = str(m["rxnNames"][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        try:
            new_reaction.subsystem = str(m['subSystems'][0, 0][i][0][0])
        except (IndexError, ValueError):
            pass
        new_reactions.append(new_reaction)
    model.add_reactions(new_reactions)
    set_objective(model, coefficients)
    coo = scipy_sparse.coo_matrix(m["S"][0, 0])
    for i, j, v in zip(coo.row, coo.col, coo.data):
        model.reactions[j].add_metabolites({model.metabolites[i]: v})
    return model