Esempio n. 1
0
def _gene_knockout_computation(m: Model, gene_ids: List[str],
                               expected_reaction_ids: List[str]) -> None:
    """Compute gene knockout."""
    genes = [m.genes.get_by_id(i) for i in gene_ids]
    expected_reactions = {
        m.reactions.get_by_id(i)
        for i in expected_reaction_ids
    }
    removed1 = set(find_gene_knockout_reactions(m, genes))
    removed2 = set(_find_gene_knockout_reactions_fast(m, genes))
    assert removed1 == expected_reactions
    assert removed2 == expected_reactions
    delete_model_genes(m, gene_ids, cumulative_deletions=False)
    assert _get_removed(m) == expected_reaction_ids
    undelete_model_genes(m)
Esempio n. 2
0
def test_gene_knockout(salmonella: Model) -> None:
    """Test gene knockout."""
    gene_list = ["STM1067", "STM0227"]
    dependent_reactions = {
        "3HAD121",
        "3HAD160",
        "3HAD80",
        "3HAD140",
        "3HAD180",
        "3HAD100",
        "3HAD181",
        "3HAD120",
        "3HAD60",
        "3HAD141",
        "3HAD161",
        "T2DECAI",
        "3HAD40",
    }
    _gene_knockout_computation(salmonella, gene_list, dependent_reactions)
    _gene_knockout_computation(salmonella, ["STM4221"], {"PGI"})
    _gene_knockout_computation(salmonella, ["STM1746.S"], {"4PEPTabcpp"})
    # test cumulative behavior
    delete_model_genes(salmonella, gene_list[:1])
    delete_model_genes(salmonella, gene_list[1:], cumulative_deletions=True)
    delete_model_genes(salmonella, ["STM4221"], cumulative_deletions=True)
    dependent_reactions.add("PGI")
    assert _get_removed(salmonella) == dependent_reactions
    # non-cumulative following cumulative
    delete_model_genes(salmonella, ["STM4221"], cumulative_deletions=False)
    assert _get_removed(salmonella) == {"PGI"}
    # make sure on reset that the bounds are correct
    reset_bound = salmonella.reactions.get_by_id("T2DECAI").upper_bound
    assert reset_bound == 1000.0
    # test computation when gene name is a subset of another
    test_model = Model()
    test_reaction_1 = Reaction("test1")
    test_reaction_1.gene_reaction_rule = "eggs or (spam and eggspam)"
    test_model.add_reactions([test_reaction_1])
    _gene_knockout_computation(test_model, ["eggs"], set())
    _gene_knockout_computation(test_model, ["eggs", "spam"], {"test1"})
    # test computation with nested boolean expression
    test_reaction_1.gene_reaction_rule = "g1 and g2 and (g3 or g4 or (g5 and g6))"
    _gene_knockout_computation(test_model, ["g3"], set())
    _gene_knockout_computation(test_model, ["g1"], {"test1"})
    _gene_knockout_computation(test_model, ["g5"], set())
    _gene_knockout_computation(test_model, ["g3", "g4", "g5"], {"test1"})
    # test computation when gene names are python expressions
    test_reaction_1.gene_reaction_rule = "g1 and (for or in)"
    _gene_knockout_computation(test_model, ["for", "in"], {"test1"})
    _gene_knockout_computation(test_model, ["for"], set())
    test_reaction_1.gene_reaction_rule = "g1 and g2 and g2.conjugate"
    _gene_knockout_computation(test_model, ["g2"], {"test1"})
    _gene_knockout_computation(test_model, ["g2.conjugate"], {"test1"})
    test_reaction_1.gene_reaction_rule = "g1 and (try:' or 'except:1)"
    _gene_knockout_computation(test_model, ["try:'"], set())
    _gene_knockout_computation(test_model, ["try:'", "'except:1"], {"test1"})
Esempio n. 3
0
def single_gene_deletion_moma(cobra_model, gene_list, solver=None,
                              **solver_args):
    """Sequentially knocks out each gene in a model using MOMA.

    Not supposed to be called directly use
    `single_reactions_deletion(..., method="moma")` instead.

    Parameters
    ----------
    gene_list : iterable
        List of gene IDs or cobra.Reaction.
    solver: str, optional
        The name of the solver to be used.

    Returns
    -------
    tuple of dicts
        A tuple ({reaction_id: growth_rate}, {reaction_id: status})
    """
    if moma is None:
        raise RuntimeError("scipy required for moma")

    legacy = False
    if solver is None:
        solver = cobra_model.solver
    elif "optlang-" in solver:
        solver = solvers.interface_to_str(solver)
        solver = solvers.solvers[solver]
    else:
        legacy = True
        solver = legacy_solvers.solver_dict[solver]
        moma_model, moma_objective = moma.create_euclidian_moma_model(
            cobra_model)

    growth_rate_dict = {}
    status_dict = {}

    if not legacy:
        with cobra_model as m:
            m.solver = solver
            moma.add_moma(m)
            for gene in gene_list:
                ko = find_gene_knockout_reactions(cobra_model, [gene])
                with m:
                    for reaction in ko:
                        reaction.bounds = (0.0, 0.0)
                    m.solver.optimize()
                    status = m.solver.status
                    status_dict[gene.id] = status
                    if status == "optimal":
                        growth = m.variables.moma_old_objective.primal
                    else:
                        growth = 0.0
                    growth_rate_dict[gene.id] = growth
    else:
        for gene in gene_list:
            delete_model_genes(moma_model, [gene.id])
            solution = moma.solve_moma_model(moma_model, moma_objective,
                                             solver=solver, **solver_args)
            status_dict[gene.id] = solution.status
            growth_rate_dict[gene.id] = solution.f
            undelete_model_genes(moma_model)
    return growth_rate_dict, status_dict
Esempio n. 4
0
def double_gene_deletion_moma(cobra_model, gene_list_1=None, gene_list_2=None,
                              method='moma', single_deletion_growth_dict=None,
                              solver='glpk', growth_tolerance=1e-8,
                              error_reporting=None):
    """This will disable reactions for all gene pairs from gene_list_1 and
    gene_list_2 and then run simulations to optimize for the objective
    function.  The contribution of each reaction to the objective function
    is indicated in cobra_model.reactions[:].objective_coefficient vector.

    NOTE:  We've assumed that there is no such thing as a synthetic rescue with
    this modeling framework.

    cobra_model: a cobra.Model object

    gene_list_1: Is None or a list of genes.  If None then both gene_list_1
    and gene_list_2 are assumed to correspond to cobra_model.genes.
    
    gene_list_2: Is None or a list of genes.  If None then gene_list_2 is
    assumed to correspond to gene_list_1.

    method: 'fba' or 'moma' to run flux balance analysis or minimization
    of metabolic adjustments.
    
    single_deletion_growth_dict: A dictionary that provides the growth
    rate information for single gene knock outs.  This can speed up
    simulations because nonviable single deletion strains imply that all
    double deletion strains will also be nonviable.

    solver: 'glpk', 'gurobi', or 'cplex'.

    error_reporting: None or True

    growth_tolerance: float.  The effective lower bound on the growth rate
    for a single deletion that is still considered capable of growth.  

    Returns a dictionary of the gene ids in the x dimension (x) and the y
    dimension (y), and the growth simulation data (data).
    
    """
    #BUG: Since this might be called from ppmap, the modules need to
    #be imported.  Modify ppmap to take depfuncs
    from numpy import zeros
    nan = float('nan')
    from cobra.flux_analysis.single_deletion import single_deletion
    from cobra.manipulation import delete_model_genes, undelete_model_genes
    ##TODO: Use keywords instead
    if isinstance(cobra_model, dict):
        tmp_dict = cobra_model
        cobra_model = tmp_dict['cobra_model']
        if 'gene_list_1' in tmp_dict:
            gene_list_1 = tmp_dict['gene_list_1']
        if 'gene_list_2' in tmp_dict:
            gene_list_2 = tmp_dict['gene_list_2']
        if 'method' in tmp_dict:
            method = tmp_dict['method']
        if 'single_deletion_growth_dict' in tmp_dict:
            single_deletion_growth_dict = tmp_dict['single_deletion_growth_dict']
        if 'solver' in tmp_dict:
            solver = tmp_dict['solver']
        if 'error_reporting' in tmp_dict:
            error_reporting = tmp_dict['error_reporting']
    else:
        cobra_model = cobra_model
    #this is a slow way to revert models.
    wt_model = cobra_model  #NOTE: It may no longer be necessary to use a wt_model
    #due to undelete_model_genes
    if gene_list_1 is None:
        gene_list_1 = cobra_model.genes
    elif not hasattr(gene_list_1[0], 'id'):
        gene_list_1 = map(cobra_model.genes.get_by_id, gene_list_1)
    #Get default values to use if the deletions do not alter any reactions
    cobra_model.optimize(solver=solver)
    basal_f = cobra_model.solution.f
    if method.lower() == 'moma':
        wt_model = cobra_model.copy()
        combined_model = None
    single_gene_set = set(gene_list_1)
    if gene_list_2 is not None:
        if not hasattr(gene_list_2[0], 'id'):
            gene_list_2 = map(cobra_model.genes.get_by_id, gene_list_2)
        single_gene_set.update(gene_list_2)
    #Run the single deletion analysis to account for double deletions that
    #target the same gene and lethal deletions.  We assume that there
    #aren't synthetic rescues.
    single_deletion_growth_dict = single_deletion(cobra_model,
                                                  list(single_gene_set),
                                                  method=method,
                                                  solver=solver)[0]
    if gene_list_2 is None or gene_list_1 == gene_list_2:
        number_of_genes = len(gene_list_1)
        gene_list_2 = gene_list_1
        deletion_array = zeros([number_of_genes, number_of_genes]) 
        ##TODO: Speed up this triangular process
        #For the case where the contents of the lists are the same cut the work in half.
        #There might be a faster way to do this by using a triangular array function
        #in numpy
        #Populate the diagonal from the single deletion lists
        for i, the_gene in enumerate(gene_list_1):
            deletion_array[i, i] = single_deletion_growth_dict[the_gene.id]
        for i, gene_1 in enumerate(gene_list_1[:-1]):
            #TODO: Since there cannot be synthetic rescues we can assume
            #that the whole row for a lethal deletion
            #will be equal to that deletion.
            if single_deletion_growth_dict[gene_1.id] < growth_tolerance:
                tmp_solution = single_deletion_growth_dict[gene_1.id]
                for j in range(i+1, number_of_genes):
                    deletion_array[j, i] = deletion_array[i, j] = tmp_solution
            else:
                for j, gene_2 in enumerate(gene_list_1[i+1:], i+1):
                    if single_deletion_growth_dict[gene_2.id] < growth_tolerance:
                        tmp_solution = single_deletion_growth_dict[gene_2.id]
                    else:
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == 'fba':
                                #Assumes that the majority of perturbations don't change
                                #reactions which is probably false
                                cobra_model.optimize(solver=solver, error_reporting=error_reporting)
                                the_status = cobra_model.solution.status
                                tmp_solution = cobra_model.solution.f
                            elif method.lower() == 'moma':
                                try:
                                    moma_solution = moma(wt_model, cobra_model,
                                                         combined_model=combined_model,
                                                         solver=solver)
                                    tmp_solution = float(moma_solution.pop('objective_value'))
                                    the_status = moma_solution.pop('status')
                                    combined_model = moma_solution.pop('combined_model')
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = 'failed'
                            if the_status not in ['opt', 'optimal']  and \
                                   error_reporting:
                                print('%s / %s: %s status: %s'%(gene_1, gene_2, solver,
                                                                the_status))
                            #Reset the model to orginial form.
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[j, i] = deletion_array[i, j] = tmp_solution

    else:
        deletion_array = zeros([len(gene_list_1), len(gene_list_2)])
        #Now deal with the case where the gene lists are different
        for i, gene_1 in enumerate(gene_list_1):
            if single_deletion_growth_dict[gene_1.id] <= 0:
                for j in range(len(gene_list_2)):
                    deletion_array[i, j] = 0.
            else:
                for j, gene_2 in enumerate(gene_list_2):
                    #Assume no such thing as a synthetic rescue
                    if single_deletion_growth_dict[gene_2.id] <= growth_tolerance:
                        tmp_solution = single_deletion_growth_dict[gene_2.id]
                    else:
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == 'fba':
                                cobra_model.optimize(solver=solver)
                                tmp_solution = cobra_model.solution.f
                                the_status = cobra_model.solution.status
                            elif method.lower() == 'moma':
                                try:
                                    moma_solution = moma(wt_model, cobra_model,
                                                         combined_model=combined_model,
                                                         solver=solver)
                                    tmp_solution = float(moma_solution.pop('objective_value'))
                                    the_status = moma_solution.pop('status')
                                    combined_model = moma_solution.pop('combined_model')
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = 'failed'
                            if the_status not in ['opt', 'optimal']  and \
                                   error_reporting:
                                print('%s / %s: %s status: %s'%(repr(gene_1), repr(gene_2), solver,
                                                            cobra_model.solution.status))
                            #Reset the model to wt form
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[i, j] = tmp_solution
    if hasattr(gene_list_1, 'id'):
        gene_list_1 = [x.id for x in gene_list_1]
    if hasattr(gene_list_2, 'id'):
        gene_list_2 = [x.id for x in gene_list_2]
        
    return({'x': gene_list_1, 'y': gene_list_2, 'data': deletion_array})
Esempio n. 5
0
def double_gene_deletion(
    cobra_model,
    gene_list_1=None,
    gene_list_2=None,
    method="fba",
    single_deletion_growth_dict=None,
    the_problem="return",
    solver="glpk",
    error_reporting=None,
):
    """This will disable reactions for all gene pairs from gene_list_1 and
    gene_list_2 and then run simulations to optimize for the objective
    function.  The contribution of each reaction to the objective function
    is indicated in cobra_model.reactions[:].objective_coefficient vector.

    cobra_model: a cobra.Model object

    gene_list_1: Is None or a list of genes.  If None then both gene_list_1
    and gene_list_2 are assumed to correspond to cobra_model.genes.
    
    gene_list_2: Is None or a list of genes.  If None then gene_list_2 is
    assumed to correspond to gene_list_1.

    method: 'fba' or 'moma' to run flux balance analysis or minimization
    of metabolic adjustments.
    
    single_deletion_growth_dict: A dictionary that provides the growth
    rate information for single gene knock outs.  This can speed up
    simulations because nonviable single deletion strains imply that all
    double deletion strains will also be nonviable.

    the_problem: Is None, 'return', or an LP model object for the solver.

    solver: 'glpk', 'gurobi', or 'cplex'.

    error_reporting: None or True

    Returns a dictionary of the genes in the x dimension (x), the y
    dimension (y), and the growth simulation data (data).
    
    """
    # BUG: Since this might be called from ppmap, the modules need to
    # be imported.  Modify ppmap to take depfuncs
    from numpy import zeros, nan
    from cobra.flux_analysis.single_deletion import single_deletion
    from cobra.manipulation import initialize_growth_medium
    from cobra.manipulation import delete_model_genes, undelete_model_genes

    ##TODO: Use keywords instead
    if isinstance(cobra_model, dict):
        tmp_dict = cobra_model
        cobra_model = tmp_dict["cobra_model"]
        if "gene_list_1" in tmp_dict:
            gene_list_1 = tmp_dict["gene_list_1"]
        if "gene_list_2" in tmp_dict:
            gene_list_2 = tmp_dict["gene_list_2"]
        if "method" in tmp_dict:
            method = tmp_dict["method"]
        if "the_problem" in tmp_dict:
            the_problem = tmp_dict["the_problem"]
        if "single_deletion_growth_dict" in tmp_dict:
            single_deletion_growth_dict = tmp_dict["single_deletion_growth_dict"]
        if "solver" in tmp_dict:
            solver = tmp_dict["solver"]
        if "error_reporting" in tmp_dict:
            error_reporting = tmp_dict["error_reporting"]
    else:
        cobra_model = cobra_model
    # this is a slow way to revert models.
    wt_model = cobra_model  # NOTE: It may no longer be necessary to use a wt_model
    # due to undelete_model_genes
    if gene_list_1 is None:
        gene_list_1 = cobra_model.genes
    elif not hasattr(gene_list_1[0], "id"):
        gene_list_1 = map(cobra_model.genes.get_by_id, gene_list_1)
    # Get default values to use if the deletions do not alter any reactions
    the_problem = cobra_model.optimize(the_problem=the_problem, solver=solver)
    basal_f = cobra_model.solution.f
    if method.lower() == "moma":
        wt_model = cobra_model.copy()
        the_problem = "return"
        combined_model = None
    single_gene_set = set(gene_list_1)
    if gene_list_2:
        if not hasattr(gene_list_2[0], "id"):
            gene_list_2 = map(cobra_model.genes.get_by_id, gene_list_2)
        single_gene_set.update(gene_list_2)
    # Run the single deletion analysis to account for double deletions that
    # target the same gene and lethal deletions.  We assume that there
    # aren't synthetic rescues.
    single_deletion_growth_dict = single_deletion(
        cobra_model,
        list(single_gene_set),
        method=method,
        the_problem=the_problem,
        solver=solver,
        error_reporting=error_reporting,
    )[0]
    if gene_list_2 is None or gene_list_1 == gene_list_2:
        deletion_array = zeros([len(gene_list_1), len(gene_list_1)])
        ##TODO: Speed up this triangular process
        # For the case where the contents of the lists are the same cut the work in half.
        # There might be a faster way to do this by using a triangular array function
        # in numpy
        # Populate the diagonal from the single deletion lists
        for i, the_gene in enumerate(gene_list_1):
            deletion_array[i, i] = single_deletion_growth_dict[the_gene.id]
        for i in range(len(gene_list_1) - 1):
            gene_1 = gene_list_1[i]
            # TODO: Since there cannot be synthetic rescues we can assume
            # that the whole row for a lethal deletion
            # will be equal to that deletion.
            if single_deletion_growth_dict[gene_1.id] <= 0:
                for j in range(i + 1, len(gene_list_1)):
                    deletion_array[j, i] = deletion_array[i, j] = single_deletion_growth_dict[gene_2.id]
            else:
                for j in range(i + 1, len(gene_list_1)):
                    if single_deletion_growth_dict[gene_1.id] <= 0:
                        tmp_solution = single_deletion_growth_dict[gene_1.id]
                    else:
                        gene_2 = gene_list_1[j]
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == "fba":
                                # Assumes that the majority of perturbations don't change
                                # reactions which is probably false
                                cobra_model.optimize(
                                    the_problem=the_problem, solver=solver, error_reporting=error_reporting
                                )
                                the_status = cobra_model.solution.status
                                tmp_solution = cobra_model.solution.f
                            elif method.lower() == "moma":
                                try:
                                    moma_solution = moma(
                                        wt_model,
                                        cobra_model,
                                        combined_model=combined_model,
                                        solver=solver,
                                        the_problem=the_problem,
                                    )
                                    tmp_solution = float(moma_solution.pop("objective_value"))
                                    the_problem = moma_solution.pop("the_problem")
                                    the_status = moma_solution.pop("status")
                                    combined_model = moma_solution.pop("combined_model")
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = "failed"
                            if the_status not in ["opt", "optimal"] and error_reporting:
                                print "%s / %s: %s status: %s" % (gene_1, gene_2, solver, the_status)
                            # Reset the model to orginial form.
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[j, i] = deletion_array[i, j] = tmp_solution

    else:
        deletion_array = zeros([len(gene_list_1), len(gene_list_2)])
        # Now deal with the case where the gene lists are different
        for i, gene_1 in enumerate(gene_list_1):
            if single_deletion_growth_dict[gene_1.id] <= 0:
                for j in range(len(gene_list_2)):
                    deletion_array[i, j] = 0.0
            else:
                for j, gene_2 in enumerate(gene_list_2):
                    # Assume no such thing as a synthetic rescue
                    if single_deletion_growth_dict[gene_2.id] <= 0:
                        tmp_solution = single_deletion_growth_dict[gene_2.id]
                    else:
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == "fba":
                                cobra_model.optimize(
                                    the_problem=the_problem, solver=solver, error_reporting=error_reporting
                                )
                                tmp_solution = cobra_model.solution.f
                                the_status = cobra_model.solution.status
                            elif method.lower() == "moma":
                                try:
                                    moma_solution = moma(
                                        wt_model,
                                        cobra_model,
                                        combined_model=combined_model,
                                        solver=solver,
                                        the_problem=the_problem,
                                    )
                                    tmp_solution = float(moma_solution.pop("objective_value"))
                                    the_problem = moma_solution.pop("the_problem")
                                    the_status = moma_solution.pop("status")
                                    combined_model = moma_solution.pop("combined_model")
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = "failed"
                            if the_status not in ["opt", "optimal"] and error_reporting:
                                print "%s / %s: %s status: %s" % (
                                    repr(gene_1),
                                    repr(gene_2),
                                    solver,
                                    cobra_model.solution.status,
                                )
                            # Reset the model to wt form
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[i, j] = tmp_solution

    return {"x": gene_list_1, "y": gene_list_2, "data": deletion_array}
Esempio n. 6
0
def double_gene_deletion_moma(cobra_model,
                              gene_list_1=None,
                              gene_list_2=None,
                              method='moma',
                              single_deletion_growth_dict=None,
                              solver='glpk',
                              growth_tolerance=1e-8,
                              error_reporting=None):
    """This will disable reactions for all gene pairs from gene_list_1 and
    gene_list_2 and then run simulations to optimize for the objective
    function.  The contribution of each reaction to the objective function
    is indicated in cobra_model.reactions[:].objective_coefficient vector.

    NOTE:  We've assumed that there is no such thing as a synthetic rescue with
    this modeling framework.

    cobra_model: a cobra.Model object

    gene_list_1: Is None or a list of genes.  If None then both gene_list_1
    and gene_list_2 are assumed to correspond to cobra_model.genes.
    
    gene_list_2: Is None or a list of genes.  If None then gene_list_2 is
    assumed to correspond to gene_list_1.

    method: 'fba' or 'moma' to run flux balance analysis or minimization
    of metabolic adjustments.
    
    single_deletion_growth_dict: A dictionary that provides the growth
    rate information for single gene knock outs.  This can speed up
    simulations because nonviable single deletion strains imply that all
    double deletion strains will also be nonviable.

    solver: 'glpk', 'gurobi', or 'cplex'.

    error_reporting: None or True

    growth_tolerance: float.  The effective lower bound on the growth rate
    for a single deletion that is still considered capable of growth.  

    Returns a dictionary of the gene ids in the x dimension (x) and the y
    dimension (y), and the growth simulation data (data).
    
    """
    #BUG: Since this might be called from ppmap, the modules need to
    #be imported.  Modify ppmap to take depfuncs
    from numpy import zeros
    nan = float('nan')
    from cobra.flux_analysis.single_deletion import single_deletion
    from cobra.manipulation import delete_model_genes, undelete_model_genes
    ##TODO: Use keywords instead
    if isinstance(cobra_model, dict):
        tmp_dict = cobra_model
        cobra_model = tmp_dict['cobra_model']
        if 'gene_list_1' in tmp_dict:
            gene_list_1 = tmp_dict['gene_list_1']
        if 'gene_list_2' in tmp_dict:
            gene_list_2 = tmp_dict['gene_list_2']
        if 'method' in tmp_dict:
            method = tmp_dict['method']
        if 'single_deletion_growth_dict' in tmp_dict:
            single_deletion_growth_dict = tmp_dict[
                'single_deletion_growth_dict']
        if 'solver' in tmp_dict:
            solver = tmp_dict['solver']
        if 'error_reporting' in tmp_dict:
            error_reporting = tmp_dict['error_reporting']
    else:
        cobra_model = cobra_model
    #this is a slow way to revert models.
    wt_model = cobra_model  #NOTE: It may no longer be necessary to use a wt_model
    #due to undelete_model_genes
    if gene_list_1 is None:
        gene_list_1 = cobra_model.genes
    elif not hasattr(gene_list_1[0], 'id'):
        gene_list_1 = map(cobra_model.genes.get_by_id, gene_list_1)
    #Get default values to use if the deletions do not alter any reactions
    cobra_model.optimize(solver=solver)
    basal_f = cobra_model.solution.f
    if method.lower() == 'moma':
        wt_model = cobra_model.copy()
        combined_model = None
    single_gene_set = set(gene_list_1)
    if gene_list_2 is not None:
        if not hasattr(gene_list_2[0], 'id'):
            gene_list_2 = map(cobra_model.genes.get_by_id, gene_list_2)
        single_gene_set.update(gene_list_2)
    #Run the single deletion analysis to account for double deletions that
    #target the same gene and lethal deletions.  We assume that there
    #aren't synthetic rescues.
    single_deletion_growth_dict = single_deletion(cobra_model,
                                                  list(single_gene_set),
                                                  method=method,
                                                  solver=solver)[0]
    if gene_list_2 is None or gene_list_1 == gene_list_2:
        number_of_genes = len(gene_list_1)
        gene_list_2 = gene_list_1
        deletion_array = zeros([number_of_genes, number_of_genes])
        ##TODO: Speed up this triangular process
        #For the case where the contents of the lists are the same cut the work in half.
        #There might be a faster way to do this by using a triangular array function
        #in numpy
        #Populate the diagonal from the single deletion lists
        for i, the_gene in enumerate(gene_list_1):
            deletion_array[i, i] = single_deletion_growth_dict[the_gene.id]
        for i, gene_1 in enumerate(gene_list_1[:-1]):
            #TODO: Since there cannot be synthetic rescues we can assume
            #that the whole row for a lethal deletion
            #will be equal to that deletion.
            if single_deletion_growth_dict[gene_1.id] < growth_tolerance:
                tmp_solution = single_deletion_growth_dict[gene_1.id]
                for j in range(i + 1, number_of_genes):
                    deletion_array[j, i] = deletion_array[i, j] = tmp_solution
            else:
                for j, gene_2 in enumerate(gene_list_1[i + 1:], i + 1):
                    if single_deletion_growth_dict[
                            gene_2.id] < growth_tolerance:
                        tmp_solution = single_deletion_growth_dict[gene_2.id]
                    else:
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == 'fba':
                                #Assumes that the majority of perturbations don't change
                                #reactions which is probably false
                                cobra_model.optimize(
                                    solver=solver,
                                    error_reporting=error_reporting)
                                the_status = cobra_model.solution.status
                                tmp_solution = cobra_model.solution.f
                            elif method.lower() == 'moma':
                                try:
                                    moma_solution = moma(
                                        wt_model,
                                        cobra_model,
                                        combined_model=combined_model,
                                        solver=solver)
                                    tmp_solution = float(
                                        moma_solution.pop('objective_value'))
                                    the_status = moma_solution.pop('status')
                                    combined_model = moma_solution.pop(
                                        'combined_model')
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = 'failed'
                            if the_status not in ['opt', 'optimal']  and \
                                   error_reporting:
                                print('%s / %s: %s status: %s' %
                                      (gene_1, gene_2, solver, the_status))
                            #Reset the model to orginial form.
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[j, i] = deletion_array[i, j] = tmp_solution

    else:
        deletion_array = zeros([len(gene_list_1), len(gene_list_2)])
        #Now deal with the case where the gene lists are different
        for i, gene_1 in enumerate(gene_list_1):
            if single_deletion_growth_dict[gene_1.id] <= 0:
                for j in range(len(gene_list_2)):
                    deletion_array[i, j] = 0.
            else:
                for j, gene_2 in enumerate(gene_list_2):
                    #Assume no such thing as a synthetic rescue
                    if single_deletion_growth_dict[
                            gene_2.id] <= growth_tolerance:
                        tmp_solution = single_deletion_growth_dict[gene_2.id]
                    else:
                        delete_model_genes(cobra_model, [gene_1, gene_2])
                        if cobra_model._trimmed:
                            if method.lower() == 'fba':
                                cobra_model.optimize(solver=solver)
                                tmp_solution = cobra_model.solution.f
                                the_status = cobra_model.solution.status
                            elif method.lower() == 'moma':
                                try:
                                    moma_solution = moma(
                                        wt_model,
                                        cobra_model,
                                        combined_model=combined_model,
                                        solver=solver)
                                    tmp_solution = float(
                                        moma_solution.pop('objective_value'))
                                    the_status = moma_solution.pop('status')
                                    combined_model = moma_solution.pop(
                                        'combined_model')
                                    del moma_solution
                                except:
                                    tmp_solution = nan
                                    the_status = 'failed'
                            if the_status not in ['opt', 'optimal']  and \
                                   error_reporting:
                                print('%s / %s: %s status: %s' %
                                      (repr(gene_1), repr(gene_2), solver,
                                       cobra_model.solution.status))
                            #Reset the model to wt form
                            undelete_model_genes(cobra_model)
                        else:
                            tmp_solution = basal_f
                    deletion_array[i, j] = tmp_solution
    if hasattr(gene_list_1, 'id'):
        gene_list_1 = [x.id for x in gene_list_1]
    if hasattr(gene_list_2, 'id'):
        gene_list_2 = [x.id for x in gene_list_2]

    return ({'x': gene_list_1, 'y': gene_list_2, 'data': deletion_array})