Esempio n. 1
0
    def parse_message(self, event, dialogue_state):
        tokens = self.lexicon.link_entity(tokenize(event.data))
        utterance = Utterance(raw_text=event.data, tokens=tokens)
        intent = self.classify_intent(utterance)

        split = None
        proposal_type = None
        ambiguous_proposal = False
        if intent == 'propose':
            proposal, proposal_type, ambiguous_proposal = self.parse_proposal(
                utterance.tokens, self.kb.item_counts)
            if proposal:
                # NOTE: YOU/ME in proposal is from the partner's perspective
                split = {
                    self.agent: proposal[self.YOU],
                    self.partner: proposal[self.ME]
                }
                if dialogue_state.partner_proposal and split[
                        self.partner] == dialogue_state.partner_proposal[
                            self.partner]:
                    intent = 'insist'
        lf = LF(intent, proposal=split, proposal_type=proposal_type)
        utterance.lf = lf

        utterance.template = self.extract_template(tokens, dialogue_state)
        utterance.ambiguous_template = ambiguous_proposal

        return utterance
Esempio n. 2
0
 def parse_message(self, event, dialogue_state):
     tokens = self.lexicon.link_entity(event.data)
     tokens = [x.lower() if not is_entity(x) else x for x in tokens]
     utterance = Utterance(raw_text=event.data, tokens=tokens)
     intent = "placeholder_intent"
     template = self.extract_template(tokens, dialogue_state)
     utterance.lf = LF(intent, topic="placeholder")
     utterance.template = template
     return utterance
Esempio n. 3
0
 def parse_message(self, event, dialogue_state):
     tokens = self.lexicon.link_entity(event.data)
     tokens = [x.lower() if not is_entity(x) else x for x in tokens]
     utterance = Utterance(raw_text=event.data, tokens=tokens)
     intent = self.classify_intent(utterance, dialogue_state)
     template = self.extract_template(tokens, dialogue_state)
     utterance.lf = LF(intent, titles=self.get_entities(tokens, 'title'))
     utterance.template = template
     return utterance
Esempio n. 4
0
 def parse_offer(self, event):
     intent = 'offer'
     try:
         price = float(event.data.get('price'))
     except TypeError:
         price = None
     return Utterance(logical_form=LF(intent, price=price),
                      template=['<offer>'])
Esempio n. 5
0
 def template_message(self, intent):
     template = self.retrieve_response_template(intent)
     lf = LF(intent)
     text = template['template']
     utterance = Utterance(raw_text=text,
                           logical_form=lf,
                           template=template)
     return self.message(utterance)
Esempio n. 6
0
    def parse_message(self, event, dialogue_state):
        tokens = self.lexicon.link_entity(tokenize(event.data),
                                          kb=self.kb,
                                          scale=False)
        template = self.extract_template(tokens, dialogue_state)
        utterance = Utterance(raw_text=event.data, tokens=tokens)

        tokens_with_parsed_price = self.parse_prices(tokens, dialogue_state)
        intent = self.classify_intent(utterance, tokens_with_parsed_price,
                                      dialogue_state)

        proposed_price = self.get_proposed_price(tokens_with_parsed_price,
                                                 dialogue_state)
        utterance.lf = LF(intent, price=proposed_price)

        utterance.template = template

        return utterance
Esempio n. 7
0
 def parse_select(self, event):
     matched = False
     for item in self.kb.items:
         if item == event.data:
             matched = True
     return Utterance(logical_form=LF(event.action,
                                      item=event.data,
                                      matched=matched),
                      template=['<select>'])
Esempio n. 8
0
    def parse_message(self, event, dialogue_state):
        tokens = self.lexicon.link_entity(
            tokenize(event.data),
            kb=self.kb,
            mentioned_entities=dialogue_state.mentioned_entities,
            known_kb=False)
        utterance = Utterance(raw_text=event.data, tokens=tokens)
        intent = self.classify_intent(utterance)

        exclude_entities = []
        entities = []
        for i, token in enumerate(tokens):
            if is_entity(token):
                if i > 0 and tokens[i - 1] in self.neg_words:
                    exclude_entities.append(token.canonical)
                else:
                    entities.append(token.canonical)

        if len(entities) == 0 and len(exclude_entities) > 0:
            intent = 'negative'

        signature = ''
        if self.is_negative(utterance) and intent == 'inform':
            utterance.ambiguous_template = True
        elif entities:
            signature = self.signature(entities)
        elif exclude_entities:
            signature = self.signature(exclude_entities)

        if intent == 'negative' and not exclude_entities:
            exclude_entities = dialogue_state.my_entities

        lf = LF(intent,
                entities=entities,
                exclude_entities=exclude_entities,
                signature=signature)
        utterance.lf = lf

        utterance.template = self.extract_template(tokens, dialogue_state)

        return utterance