Esempio n. 1
0
def train():
  print("inside train")
  exit()
  dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = \
    segmentation_create_dataloaders(config)
  dataloaders_head_B = dataloaders_head_A  # unlike for clustering datasets

  net = archs.__dict__[config.arch](config)
  if config.restart:
    dict = torch.load(os.path.join(config.out_dir, dict_name),
                      map_location=lambda storage, loc: storage)
    net.load_state_dict(dict["net"])
  net.cuda()
  net = torch.nn.DataParallel(net)
  net.train()

  optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr)
  if config.restart:
    optimiser.load_state_dict(dict["optimiser"])

  heads = ["A", "B"]
  if hasattr(config, "head_B_first") and config.head_B_first:
    heads = ["B", "A"]

  # Results
  # ----------------------------------------------------------------------

  if config.restart:
    next_epoch = config.last_epoch + 1
    print("starting from epoch %d" % next_epoch)

    config.epoch_acc = config.epoch_acc[:next_epoch]  # in case we overshot
    config.epoch_avg_subhead_acc = config.epoch_avg_subhead_acc[:next_epoch]
    config.epoch_stats = config.epoch_stats[:next_epoch]

    config.epoch_loss_head_A = config.epoch_loss_head_A[:(next_epoch - 1)]
    config.epoch_loss_no_lamb_head_A = config.epoch_loss_no_lamb_head_A[
                                       :(next_epoch - 1)]
    config.epoch_loss_head_B = config.epoch_loss_head_B[:(next_epoch - 1)]
    config.epoch_loss_no_lamb_head_B = config.epoch_loss_no_lamb_head_B[
                                       :(next_epoch - 1)]
  else:
    config.epoch_acc = []
    config.epoch_avg_subhead_acc = []
    config.epoch_stats = []

    config.epoch_loss_head_A = []
    config.epoch_loss_no_lamb_head_A = []

    config.epoch_loss_head_B = []
    config.epoch_loss_no_lamb_head_B = []

    _ = segmentation_eval(config, net,
                          mapping_assignment_dataloader=mapping_assignment_dataloader,
                          mapping_test_dataloader=mapping_test_dataloader,
                          sobel=(not config.no_sobel),
                          using_IR=config.using_IR)

    print(
      "Pre: time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
    sys.stdout.flush()
    next_epoch = 1

  fig, axarr = plt.subplots(6, sharex=False, figsize=(20, 20))

  if not config.use_uncollapsed_loss:
    print("using condensed loss (default)")
    loss_fn = IID_segmentation_loss
  else:
    print("using uncollapsed loss!")
    loss_fn = IID_segmentation_loss_uncollapsed

  # Train
  # ------------------------------------------------------------------------

  for e_i in xrange(next_epoch, config.num_epochs):
    print("Starting e_i: %d %s" % (e_i, datetime.now()))
    sys.stdout.flush()

    if e_i in config.lr_schedule:
      optimiser = update_lr(optimiser, lr_mult=config.lr_mult)

    for head_i in range(2):
      head = heads[head_i]
      if head == "A":
        dataloaders = dataloaders_head_A
        epoch_loss = config.epoch_loss_head_A
        epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_A
        lamb = config.lamb_A

      elif head == "B":
        dataloaders = dataloaders_head_B
        epoch_loss = config.epoch_loss_head_B
        epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_B
        lamb = config.lamb_B

      iterators = (d for d in dataloaders)
      b_i = 0
      avg_loss = 0.  # over heads and head_epochs (and sub_heads)
      avg_loss_no_lamb = 0.
      avg_loss_count = 0

      for tup in itertools.izip(*iterators):
        net.module.zero_grad()

        if not config.no_sobel:
          pre_channels = config.in_channels - 1
        else:
          pre_channels = config.in_channels

        all_img1 = torch.zeros(config.batch_sz, pre_channels,
                               config.input_sz, config.input_sz).to(
          torch.float32).cuda()
        all_img2 = torch.zeros(config.batch_sz, pre_channels,
                               config.input_sz, config.input_sz).to(
          torch.float32).cuda()
        all_affine2_to_1 = torch.zeros(config.batch_sz, 2, 3).to(
          torch.float32).cuda()
        all_mask_img1 = torch.zeros(config.batch_sz, config.input_sz,
                                    config.input_sz).to(torch.float32).cuda()

        curr_batch_sz = tup[0][0].shape[0]
        for d_i in xrange(config.num_dataloaders):
          img1, img2, affine2_to_1, mask_img1 = tup[d_i]
          assert (img1.shape[0] == curr_batch_sz)

          actual_batch_start = d_i * curr_batch_sz
          actual_batch_end = actual_batch_start + curr_batch_sz

          all_img1[actual_batch_start:actual_batch_end, :, :, :] = img1
          all_img2[actual_batch_start:actual_batch_end, :, :, :] = img2
          all_affine2_to_1[actual_batch_start:actual_batch_end, :,
          :] = affine2_to_1
          all_mask_img1[actual_batch_start:actual_batch_end, :, :] = mask_img1

        if not (curr_batch_sz == config.dataloader_batch_sz) and (
            e_i == next_epoch):
          print("last batch sz %d" % curr_batch_sz)

        curr_total_batch_sz = curr_batch_sz * config.num_dataloaders  # times 2
        all_img1 = all_img1[:curr_total_batch_sz, :, :, :]
        all_img2 = all_img2[:curr_total_batch_sz, :, :, :]
        all_affine2_to_1 = all_affine2_to_1[:curr_total_batch_sz, :, :]
        all_mask_img1 = all_mask_img1[:curr_total_batch_sz, :, :]

        if (not config.no_sobel):
          all_img1 = sobel_process(all_img1, config.include_rgb,
                                   using_IR=config.using_IR)
          all_img2 = sobel_process(all_img2, config.include_rgb,
                                   using_IR=config.using_IR)

        x1_outs = net(all_img1, head=head)
        x2_outs = net(all_img2, head=head)

        avg_loss_batch = None  # avg over the heads
        avg_loss_no_lamb_batch = None

        for i in xrange(config.num_sub_heads):
          loss, loss_no_lamb = loss_fn(x1_outs[i],
                                       x2_outs[i],
                                       all_affine2_to_1=all_affine2_to_1,
                                       all_mask_img1=all_mask_img1,
                                       lamb=lamb,
                                       half_T_side_dense=config.half_T_side_dense,
                                       half_T_side_sparse_min=config.half_T_side_sparse_min,
                                       half_T_side_sparse_max=config.half_T_side_sparse_max)

          if avg_loss_batch is None:
            avg_loss_batch = loss
            avg_loss_no_lamb_batch = loss_no_lamb
          else:
            avg_loss_batch += loss
            avg_loss_no_lamb_batch += loss_no_lamb

        avg_loss_batch /= config.num_sub_heads
        avg_loss_no_lamb_batch /= config.num_sub_heads

        if ((b_i % 100) == 0) or (e_i == next_epoch):
          print(
            "Model ind %d epoch %d head %s batch: %d avg loss %f avg loss no "
            "lamb %f "
            "time %s" % \
            (config.model_ind, e_i, head, b_i, avg_loss_batch.item(),
             avg_loss_no_lamb_batch.item(), datetime.now()))
          sys.stdout.flush()

        if not np.isfinite(avg_loss_batch.item()):
          print("Loss is not finite... %s:" % str(avg_loss_batch))
          exit(1)

        avg_loss += avg_loss_batch.item()
        avg_loss_no_lamb += avg_loss_no_lamb_batch.item()
        avg_loss_count += 1

        avg_loss_batch.backward()
        optimiser.step()

        torch.cuda.empty_cache()

        b_i += 1
        if b_i == 2 and config.test_code:
          break

      avg_loss = float(avg_loss / avg_loss_count)
      avg_loss_no_lamb = float(avg_loss_no_lamb / avg_loss_count)

      epoch_loss.append(avg_loss)
      epoch_loss_no_lamb.append(avg_loss_no_lamb)

    # Eval
    # -----------------------------------------------------------------------

    is_best = segmentation_eval(config, net,
                                mapping_assignment_dataloader=mapping_assignment_dataloader,
                                mapping_test_dataloader=mapping_test_dataloader,
                                sobel=(
                                  not config.no_sobel),
                                using_IR=config.using_IR)

    print(
      "Pre: time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
    sys.stdout.flush()

    axarr[0].clear()
    axarr[0].plot(config.epoch_acc)
    axarr[0].set_title("acc (best), top: %f" % max(config.epoch_acc))

    axarr[1].clear()
    axarr[1].plot(config.epoch_avg_subhead_acc)
    axarr[1].set_title("acc (avg), top: %f" % max(config.epoch_avg_subhead_acc))

    axarr[2].clear()
    axarr[2].plot(config.epoch_loss_head_A)
    axarr[2].set_title("Loss head A")

    axarr[3].clear()
    axarr[3].plot(config.epoch_loss_no_lamb_head_A)
    axarr[3].set_title("Loss no lamb head A")

    axarr[4].clear()
    axarr[4].plot(config.epoch_loss_head_B)
    axarr[4].set_title("Loss head B")

    axarr[5].clear()
    axarr[5].plot(config.epoch_loss_no_lamb_head_B)
    axarr[5].set_title("Loss no lamb head B")

    fig.canvas.draw_idle()
    fig.savefig(os.path.join(config.out_dir, "plots.png"))

    if is_best or (e_i % config.save_freq == 0):
      net.module.cpu()
      save_dict = {"net": net.module.state_dict(),
                   "optimiser": optimiser.state_dict()}

      if e_i % config.save_freq == 0:
        torch.save(save_dict, os.path.join(config.out_dir, "latest.pytorch"))
        config.last_epoch = e_i  # for last saved version

      if is_best:
        torch.save(save_dict, os.path.join(config.out_dir, "best.pytorch"))

        with open(os.path.join(config.out_dir, "best_config.pickle"),
                  'wb') as outfile:
          pickle.dump(config, outfile)

        with open(os.path.join(config.out_dir, "best_config.txt"),
                  "w") as text_file:
          text_file.write("%s" % config)

      net.module.cuda()

    with open(os.path.join(config.out_dir, "config.pickle"), 'wb') as outfile:
      pickle.dump(config, outfile)

    with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file:
      text_file.write("%s" % config)

    if config.test_code:
      exit(0)
            loaded = torch.load(model_path,
                                map_location=lambda storage, loc: storage)
            if "net" in loaded.keys():
                loaded = loaded["net"]
            net.load_state_dict(loaded)
            net.cuda()
            net = torch.nn.DataParallel(net)
            net.module.eval()

            if reassess_acc:
                print("... reassessing acc %s" % datetime.now())
                sys.stdout.flush()
                stats_dict = segmentation_eval(config,
                                               net,
                                               mapping_assignment_dataloader,
                                               mapping_test_dataloader,
                                               sobel=(not config.no_sobel),
                                               return_only=True,
                                               verbose=0)
                acc = stats_dict["best"]
                print("... reassessment finished, got acc %f" % acc)
                sys.stdout.flush()
                continue

            print("starting to run test data through for rendering %s" %
                  datetime.now())
            all_matches, all_accs = _get_assignment_data_matches(
                net,
                mapping_assignment_dataloader,
                config,
                sobel=(not config.no_sobel),
Esempio n. 3
0
  config.epoch_stats = config.epoch_stats[:next_epoch]

  config.epoch_loss = config.epoch_loss[:(next_epoch - 1)]
  config.epoch_loss_no_lamb = config.epoch_loss_no_lamb[:(next_epoch - 1)]
else:
  config.epoch_acc = []
  config.epoch_avg_subhead_acc = []
  config.epoch_stats = []

  config.epoch_loss = []
  config.epoch_loss_no_lamb = []

  # torch.cuda.empty_cache()
  _ = segmentation_eval(config, net,
                        mapping_assignment_dataloader=mapping_assignment_dataloader,
                        mapping_test_dataloader=mapping_test_dataloader,
                        sobel=(not config.no_sobel),
                        using_IR=config.using_IR)

  print("Pre: time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
  sys.stdout.flush()
  next_epoch = 1

fig, axarr = plt.subplots(4, sharex=False, figsize=(20, 20))

if not config.use_uncollapsed_loss:
  print("using condensed loss (default)")
  loss_fn = IID_segmentation_loss
else:
  print("using uncollapsed loss")
  loss_fn = IID_segmentation_loss_uncollapsed
Esempio n. 4
0
dataloaders_head_A, mapping_assignment_dataloader, mapping_test_dataloader = \
  segmentation_create_dataloaders(old_config)
dataloaders_head_B = dataloaders_head_A  # unlike for clustering datasets

net = archs.__dict__[old_config.arch](old_config)

net_state = torch.load(os.path.join(old_config.out_dir, "best_net.pytorch"),
                       map_location=lambda storage, loc: storage)
net.load_state_dict(net_state)
net.cuda()
net = torch.nn.DataParallel(net)

stats_dict = segmentation_eval(old_config, net,
                               mapping_assignment_dataloader=mapping_assignment_dataloader,
                               mapping_test_dataloader=mapping_test_dataloader,
                               sobel=(not old_config.no_sobel),
                               using_IR=old_config.using_IR,
                               return_only=True)

acc = stats_dict["best"]

config.epoch_stats = [stats_dict]
config.epoch_acc = [acc]
config.epoch_avg_subhead_acc = stats_dict["avg"]

print("Time %s: \n %s" % (datetime.now(), nice(config.epoch_stats[-1])))
sys.stdout.flush()

with open(os.path.join(config.out_dir, "config.pickle"), 'wb') as outfile:
  pickle.dump(config, outfile)