import argparse

    parser = argparse.ArgumentParser(description='Compare trained model with random and perfect AI')
    parser.add_argument('--path', metavar='N', type=str, nargs='?', default=None, help='working path')
    parser.add_argument('--count', metavar='N', type=int, nargs='?', default=None, help='compare count')
    args = parser.parse_args()
    
    arg_dict = vars(args)

    if arg_dict['path'] == None:
        scan_dir = os.path.join('output',MY_NAME)
        filename_list = os.listdir(scan_dir)
        if len(filename_list) <= 0:
            raise '{} is empty'.format(scan_dir)
        filename_int_list = [util.to_int(filename,-1) for filename in filename_list]
        arg_timestamp = str(max(filename_int_list))
        arg_dict['path'] = os.path.join(scan_dir,str(arg_timestamp))

    if arg_dict['count'] == None:
        arg_dict['count'] = 0
        while os.path.isfile(os.path.join(os.path.join(arg_dict['path'],'deeplearn','sess','{}.index'.format((arg_dict['count']+1)*1000)))):
            arg_dict['count'] += 1

    logging.info('QLCMICZK arg_dict {}'.format(json.dumps(arg_dict)))

    with open(os.path.join(arg_dict['path'],'deeplearn','input_arg_dict.json'),'r') as deeplearn_arg_dict_file:
        deeplearn_arg_dict = json.load(deeplearn_arg_dict_file)

    vs_dict_meta_list = [
        {
Esempio n. 2
0
                        metavar='N',
                        type=int,
                        nargs='?',
                        default=None,
                        help='compare filename')
    args = parser.parse_args()

    arg_dict = vars(args)

    if arg_dict['filename'] == None:
        dlcompare_path = os.path.join('output', MY_NAME, 'dlcompare')
        filename_list = os.listdir(dlcompare_path)
        if len(filename_list) <= 0:
            raise '{} is empty'.format(dlcompare_path)
        filename_int_list = [
            myutil.to_int(filename[:-5], -1) for filename in filename_list
            if filename.endswith('.json')
        ]
        arg_dict['filename'] = os.path.join(
            dlcompare_path, '{}.json'.format(max(filename_int_list)))

    data_dict = {}
    with open(arg_dict['filename'], 'r') as in_file:
        result_list = json.load(in_file)

    win_key_list = [
        {
            'type': 'win',
            'name': 'pd',
            'win': 'X',
            'style': 'ro'
if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='Show graph')
    parser.add_argument('filename', metavar='N', type=int, nargs='?', default=None, help='compare filename')
    args = parser.parse_args()

    arg_dict = vars(args)
    
    if arg_dict['filename'] == None:
        dl_path = os.path.join('output',MY_NAME)
        
        dl_filename_list = os.listdir(dl_path)
        if len(dl_filename_list) <= 0:
            raise '{} is empty'.format(dl_path)
        dl_filename_int_list = [myutil.to_int(filename,-1) for filename in dl_filename_list]
        dl_filename_int = max(dl_filename_int_list)
        dc_path = os.path.join(dl_path,str(dl_filename_int),'dlcompare')

        dc_filename_list = os.listdir(dc_path)
        dc_filename_int_list = [myutil.to_int(filename[:-5],-1) for filename in dc_filename_list if filename.endswith('.json')]
        dc_filename_int = max(dc_filename_int_list)
        arg_dict['filename'] = os.path.join(dc_path,'{}.json'.format(dc_filename_int))

    data_dict = {}
    with open(arg_dict['filename'],'r') as in_file:
        result_list = json.load(in_file)

    itr_count = 0
    for result in result_list:
        if not 'itr' in result['input']:
def main(_):
    argparser = argparse.ArgumentParser()
    argparser.add_argument(
        '--output_path',
        type=str,
        help='The path to which checkpoints and other outputs '
        'should be saved. This can be either a local or GCS '
        'path.',
        default=None
    )
    argparser.add_argument(
        '--random_stddev',
        type=float,
        help='random_stddev',
        default=0.1
    )
    argparser.add_argument(
        '--random_move_chance',
        type=float,
        help='RANDOM_MOVE_CHANCE',
        default=0.05
    )
    argparser.add_argument(
        '--train_beta',
        type=float,
        help='TRAIN_BETA',
        default=0.99
    )
    argparser.add_argument(
        '--turn_count',
        type=int,
        help='turn_count',
        default=None
    )
    argparser.add_argument(
        '--device',
        type=str,
        help='device',
        default=None
    )
    argparser.add_argument(
        '--continue',
        action='store_true',
        help='continue'
    )
#     argparser.add_argument(
#         '--element_l2_factor',
#         type=float,
#         help='ELEMENT_L2_FACTOR',
#         default=10.0
#     )
#     argparser.add_argument(
#         '--l2_weight',
#         type=float,
#         help='L2_WEIGHT',
#         default=0.1
#     )
    argparser.add_argument(
        '--train_memory',
        type=int,
        help='TRAIN_MEMORY',
        default=10000
    )
    argparser.add_argument(
        '--dropout_keep_prob',
        type=float,
        help='dropout_keep_prob',
        default=0.5
    )
    args, _ = argparser.parse_known_args()
    arg_dict = vars(args)
    logging.info('YGYMBFMN arg_dict {}'.format(json.dumps(arg_dict)))
    if(arg_dict['output_path']==None):
        if not arg_dict['continue']:
            timestamp = int(time.time())
            arg_dict['output_path'] = os.path.join('output',MY_NAME,str(timestamp),'deeplearn')
        else:
            filename_list = os.listdir(os.path.join('output',MY_NAME))
            filename_int_list = [util.to_int(filename,-1) for filename in filename_list]
            arg_timestamp = str(max(filename_int_list))
            arg_dict['output_path'] = os.path.join('output',MY_NAME,str(arg_timestamp),'deeplearn')

    if arg_dict['continue']:
        with open(os.path.join(arg_dict['output_path'],'input_arg_dict.json'),'r') as deeplearn_arg_dict_file:
            deeplearn_arg_dict = json.load(deeplearn_arg_dict_file)
        arg_dict = deeplearn_arg_dict
        arg_dict['continue'] = True
    else:
        py23.makedirs(arg_dict['output_path'],exist_ok=True)
        with open(os.path.join(arg_dict['output_path'],'input_arg_dict.json'),'w') as out_file:
            json.dump(arg_dict,out_file)

    with tf.device(arg_dict['device']):
#     with tf.device('/gpu:0'):
        game = Game()
        dl = DeepLearn(arg_dict)
        
        po = DLPlayer(dl)
        po.set_side(tttl.Pid.O)
    
        px = DLPlayer(dl)
        px.set_side(tttl.Pid.X)
        
        game.setPlayer(tttl.Pid.O, po)
        game.setPlayer(tttl.Pid.X, px)
        
        game.run(turn_count=arg_dict['turn_count'],p=logging.debug)
def main(_):
    argparser = argparse.ArgumentParser()
    argparser.add_argument(
        '--output_path',
        type=str,
        help='The path to which checkpoints and other outputs '
        'should be saved. This can be either a local or GCS '
        'path.',
        default=None
    )
    argparser.add_argument(
        '--random_stddev',
        type=float,
        help='random_stddev',
        default=0.1
    )
    argparser.add_argument(
        '--random_move_chance',
        type=float,
        help='RANDOM_MOVE_CHANCE',
        default=0.05
    )
    argparser.add_argument(
        '--train_beta',
        type=float,
        help='TRAIN_BETA',
        default=0.99
    )
    argparser.add_argument(
        '--turn_count',
        type=int,
        help='turn_count',
        default=None
    )
    argparser.add_argument(
        '--device',
        type=str,
        help='device',
        default=None
    )
    argparser.add_argument(
        '--continue',
        action='store_true',
        help='continue'
    )
#     argparser.add_argument(
#         '--element_l2_factor',
#         type=float,
#         help='ELEMENT_L2_FACTOR',
#         default=10.0
#     )
#     argparser.add_argument(
#         '--l2_weight',
#         type=float,
#         help='L2_WEIGHT',
#         default=0.1
#     )
    argparser.add_argument(
        '--train_memory',
        type=int,
        help='TRAIN_MEMORY',
        default=10000
    )
    args, _ = argparser.parse_known_args()
    arg_dict = vars(args)
    logging.info('YGYMBFMN arg_dict {}'.format(json.dumps(arg_dict)))
    if(arg_dict['output_path']==None):
        if not arg_dict['continue']:
            timestamp = int(time.time())
            arg_dict['output_path'] = os.path.join('output',MY_NAME,str(timestamp),'deeplearn')
        else:
            filename_list = os.listdir(os.path.join('output',MY_NAME))
            filename_int_list = [util.to_int(filename,-1) for filename in filename_list]
            arg_timestamp = str(max(filename_int_list))
            arg_dict['output_path'] = os.path.join('output',MY_NAME,str(arg_timestamp),'deeplearn')

    if arg_dict['continue']:
        with open(os.path.join(arg_dict['output_path'],'input_arg_dict.json'),'r') as deeplearn_arg_dict_file:
            deeplearn_arg_dict = json.load(deeplearn_arg_dict_file)
        arg_dict = deeplearn_arg_dict
        arg_dict['continue'] = True
    else:
        py23.makedirs(arg_dict['output_path'],exist_ok=True)
        with open(os.path.join(arg_dict['output_path'],'input_arg_dict.json'),'w') as out_file:
            json.dump(arg_dict,out_file)

    with tf.device(arg_dict['device']):
#     with tf.device('/gpu:0'):
        game = Game()
        dl = DeepLearn(arg_dict)
        
        po = DLPlayer(dl)
        po.set_side(tttl.Pid.O)
    
        px = DLPlayer(dl)
        px.set_side(tttl.Pid.X)
        
        game.setPlayer(tttl.Pid.O, po)
        game.setPlayer(tttl.Pid.X, px)
        
        game.run(turn_count=arg_dict['turn_count'],p=logging.debug)
Esempio n. 6
0
                        type=int,
                        nargs='?',
                        default=None,
                        help='compare filename')
    args = parser.parse_args()

    arg_dict = vars(args)

    if arg_dict['filename'] == None:
        dl_path = os.path.join('output', MY_NAME)

        dl_filename_list = os.listdir(dl_path)
        if len(dl_filename_list) <= 0:
            raise '{} is empty'.format(dl_path)
        dl_filename_int_list = [
            myutil.to_int(filename, -1) for filename in dl_filename_list
        ]
        dl_filename_int = max(dl_filename_int_list)
        dc_path = os.path.join(dl_path, str(dl_filename_int), 'dlcompare')

        dc_filename_list = os.listdir(dc_path)
        dc_filename_int_list = [
            myutil.to_int(filename[:-5], -1) for filename in dc_filename_list
            if filename.endswith('.json')
        ]
        dc_filename_int = max(dc_filename_int_list)
        arg_dict['filename'] = os.path.join(dc_path,
                                            '{}.json'.format(dc_filename_int))

    data_dict = {}
    with open(arg_dict['filename'], 'r') as in_file:
                        metavar='N',
                        type=int,
                        nargs='?',
                        default=None,
                        help='compare count')
    args = parser.parse_args()

    arg_dict = vars(args)

    if arg_dict['path'] == None:
        scan_dir = os.path.join('output', MY_NAME)
        filename_list = os.listdir(scan_dir)
        if len(filename_list) <= 0:
            raise '{} is empty'.format(scan_dir)
        filename_int_list = [
            util.to_int(filename, -1) for filename in filename_list
        ]
        arg_timestamp = str(max(filename_int_list))
        arg_dict['path'] = os.path.join(scan_dir, str(arg_timestamp))

    if arg_dict['count'] == None:
        arg_dict['count'] = 0
        while os.path.isfile(
                os.path.join(
                    os.path.join(
                        arg_dict['path'], 'deeplearn', 'sess',
                        '{}.index'.format((arg_dict['count'] + 1) * 1000)))):
            arg_dict['count'] += 1

    logging.info('QLCMICZK arg_dict {}'.format(json.dumps(arg_dict)))