Esempio n. 1
0
def statement_evaluate(leaf, parameters):
    expr = leaf.expression
    if isinstance(expr, gem.ListTensor):
        if parameters.declare[leaf]:
            array_expression = numpy.vectorize(lambda v: expression(v, parameters))
            return coffee.Decl(parameters.scalar_type,
                               _decl_symbol(expr, parameters),
                               coffee.ArrayInit(array_expression(expr.array),
                                                precision=parameters.precision))
        else:
            ops = []
            for multiindex, value in numpy.ndenumerate(expr.array):
                coffee_sym = _coffee_symbol(_ref_symbol(expr, parameters), rank=multiindex)
                ops.append(coffee.Assign(coffee_sym, expression(value, parameters)))
            return coffee.Block(ops, open_scope=False)
    elif isinstance(expr, gem.Constant):
        assert parameters.declare[leaf]
        return coffee.Decl(parameters.scalar_type,
                           _decl_symbol(expr, parameters),
                           coffee.ArrayInit(expr.array, parameters.precision),
                           qualifiers=["static", "const"])
    else:
        code = expression(expr, parameters, top=True)
        if parameters.declare[leaf]:
            return coffee.Decl(parameters.scalar_type, _decl_symbol(expr, parameters), code)
        else:
            return coffee.Assign(_ref_symbol(expr, parameters), code)
Esempio n. 2
0
def ker_write2d():
    return ast.FunDecl(
        'void', 'ker_write2d',
        [ast.Decl('int', 'V', qualifiers=['unsigned'], pointers=[''])],
        ast.Block([
            ast.Assign(ast.Symbol('V', (0, )), 1),
            ast.Assign(ast.Symbol('V', (1, )), 2)
        ]))
Esempio n. 3
0
def auxiliary_temporaries(builder, declared_temps):
    """Generates statements for assigning auxiliary temporaries
    for nodes in an expression with "high" reference count.
    Expressions which require additional temporaries are provided
    by the :class:`LocalKernelBuilder`.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information.
    :arg declared_temps: A `dict` containing all previously
                         declared temporaries. This dictionary
                         is updated as auxiliary expressions
                         are assigned temporaries.
    """
    statements = [ast.FlatBlock("/* Auxiliary temporaries */\n")]
    results = [ast.FlatBlock("/* Assign auxiliary temps */\n")]
    for exp in builder.aux_exprs:
        if exp not in declared_temps:
            t = ast.Symbol("auxT%d" % len(declared_temps))
            result = metaphrase_slate_to_cpp(exp, declared_temps)
            tensor_type = eigen_matrixbase_type(shape=exp.shape)
            statements.append(ast.Decl(tensor_type, t))
            statements.append(ast.FlatBlock("%s.setZero();\n" % t))
            results.append(ast.Assign(t, result))
            declared_temps[exp] = t

    statements.extend(results)

    return statements
Esempio n. 4
0
    def ast_matmul(self, F_a):
        """Generate an AST for a PyOP2 kernel performing a matrix-vector multiplication.

        :param F_a: Assembled firedrake.Function object for the RHS"""

        # The number of dofs on each element is /ndofs*cdim/
        F_a_fs = F_a.function_space()
        ndofs = sum(F_a_fs.topological.dofs_per_entity)
        cdim = F_a_fs.dim
        name = 'mat_vec_mul_kernel_%s' % F_a_fs.name

        identifier = (ndofs, cdim, name)
        if identifier in self.asts:
            return self.asts[identifier]

        # Craft the AST
        body = ast.Incr(ast.Symbol('C', ('i/%d' % cdim, 'i%%%d' % cdim)),
                        ast.Prod(ast.Symbol('A', ('i',), ((ndofs*cdim, 'j*%d + k' % cdim),)),
                                 ast.Symbol('B', ('j', 'k'))))
        body = ast.c_for('k', cdim, body).children[0]
        body = [ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'i%%%d' % cdim)), '0.0'),
                ast.c_for('j', ndofs, body).children[0]]
        body = ast.Root([ast.c_for('i', ndofs*cdim, body).children[0]])
        funargs = [ast.Decl('double*', 'A'), ast.Decl('double**', 'B'), ast.Decl('double**', 'C')]
        fundecl = ast.FunDecl('void', name, funargs, body, ['static', 'inline'])

        # Track the AST for later fast retrieval
        self.asts[identifier] = fundecl

        return fundecl
def expression_kernel(expr, args):
    """Produce a :class:`pyop2.Kernel` from the processed UFL expression
    expr and the corresponding args."""

    # Empty slot indicating assignment to indexed LHS, so don't do anything
    if type(expr) is Zero:
        return

    fs = args[0].function.function_space()

    d = ast.Symbol("dim")
    ast_expr = _ast(expr)
    body = ast.Block(
        (
            ast.Decl("int", d),
            ast.For(ast.Assign(d, ast.Symbol(0)),
                    ast.Less(d, ast.Symbol(fs.dof_dset.cdim)),
                    ast.Incr(d, ast.Symbol(1)),
                    ast_expr)
        )
    )

    return op2.Kernel(ast.FunDecl("void", "expression",
                                  [arg.arg for arg in args], body),
                      "expression")
Esempio n. 6
0
def auxiliary_information(builder):
    """This function generates any auxiliary information regarding special handling of
    expressions that do not have any integral forms or subkernels associated with it.

    :arg builder: a :class:`SlateKernelBuilder` object that contains all the necessary
                  temporary and expression information.

    Returns: a mapping of the form ``{aux_node: aux_temp}``, where `aux_node` is an
             already assembled data-object provided as a `ufl.Coefficient` and `aux_temp`
             is the corresponding temporary.

             a list of auxiliary statements are returned that contain temporary declarations
             and any code-blocks needed to evaluate the expression.
    """
    aux_temps = {}
    aux_statements = []
    for i, exp in enumerate(builder.aux_exprs):
        if isinstance(exp, Action):
            acting_coefficient = exp._acting_coefficient
            assert isinstance(acting_coefficient, Coefficient)

            temp = ast.Symbol("C%d" % i)
            V = acting_coefficient.function_space()
            node_extent = V.fiat_element.space_dimension()
            dof_extent = np.prod(V.ufl_element().value_shape())
            aux_statements.append(
                ast.Decl(
                    eigen_matrixbase_type(shape=(dof_extent * node_extent, )),
                    temp))
            aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))

            # Now we unpack the coefficient and insert its entries into a 1D vector temporary
            isym = ast.Symbol("i1")
            jsym = ast.Symbol("j1")
            tensor_index = ast.Sum(ast.Prod(dof_extent, isym), jsym)
            # Inner-loop running over dof_extent
            inner_loop = ast.For(
                ast.Decl("unsigned int", jsym, init=0),
                ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                ast.Assign(
                    ast.Symbol(temp, rank=(tensor_index, )),
                    ast.Symbol(builder.coefficient_map[acting_coefficient],
                               rank=(isym, jsym))))
            # Outer-loop running over node_extent
            loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                           ast.Less(isym, node_extent), ast.Incr(isym, 1),
                           inner_loop)

            aux_statements.append(loop)
            aux_temps[acting_coefficient] = temp
        else:
            raise NotImplementedError(
                "Auxiliary expression type %s not currently implemented." %
                type(exp))

    return aux_temps, aux_statements
Esempio n. 7
0
def ker_loc_reduce():
    body = ast.Incr('a', ast.Prod(ast.Symbol('V', ('i',)), ast.Symbol('B', (0,))))
    body = \
        [ast.Decl('int', 'a', '0')] +\
        ItSpace().to_for([(0, 2)], ('i',), [body]) +\
        [ast.Assign(ast.Symbol('A', (0,)), 'a')]
    return ast.FunDecl('void', 'ker_loc_reduce',
                       [ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'V', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=[''])],
                       ast.Block(body))
Esempio n. 8
0
def auxiliary_expressions(builder, declared_temps):
    """Generates statements for assigning auxiliary temporaries
    and declaring factorizations for local matrix inverses
    (if the matrix is larger than 4 x 4).

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg declared_temps: A `dict` containing all previously
        declared temporaries. This dictionary is updated as
        auxiliary expressions are assigned temporaries.
    """

    # These are either already declared terminals or expressions
    # which do not require an extra temporary/expression
    terminals = (slate.Tensor, slate.AssembledVector, slate.Negative,
                 slate.Transpose)
    statements = []

    sorted_exprs = [
        exp for exp in topological_sort(builder.expression_dag)
        if ((builder.ref_counter[exp] > 1 and not isinstance(exp, terminals))
            or isinstance(exp, slate.Factorization))
    ]

    for exp in sorted_exprs:
        if exp not in declared_temps:
            if isinstance(exp, slate.Factorization):
                t = ast.Symbol("dec%d" % len(declared_temps))
                operand, = exp.operands
                expr = slate_to_cpp(operand, declared_temps)
                tensor_type = eigen_matrixbase_type(shape=exp.shape)
                stmt = "Eigen::%s<%s > %s(%s);\n" % (exp.decomposition,
                                                     tensor_type, t, expr)
                statements.append(stmt)
            else:
                t = ast.Symbol("auxT%d" % len(declared_temps))
                result = slate_to_cpp(exp, declared_temps)
                tensor_type = eigen_matrixbase_type(shape=exp.shape)
                stmt = ast.Decl(tensor_type, t)
                assignment = ast.Assign(t, result)
                statements.extend([stmt, assignment])

            declared_temps[exp] = t

    return statements
Esempio n. 9
0
def auxiliary_temporaries(builder, declared_temps):
    """This function generates auxiliary information regarding special
    handling of expressions that require creating additional temporaries.

    :arg builder: a :class:`KernelBuilder` object that contains all the
                  necessary temporary and expression information.
    :arg declared_temps: a `dict` of temporaries that have already been
                         declared and assigned values. This will be
                         updated in this method and referenced later
                         in the compiler.
    Returns: a list of auxiliary statements are returned that contain temporary
             declarations and any code-blocks needed to evaluate the
             expression.
    """
    aux_statements = []
    for exp in builder.aux_exprs:
        if isinstance(exp, Inverse):
            if builder._ref_counts[exp] > 1:
                # Get the temporary for the particular expression
                result = metaphrase_slate_to_cpp(exp, declared_temps)

                # Now we use the generated result and assign the value to the
                # corresponding temporary.
                temp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = exp.shape
                aux_statements.append(
                    ast.Decl(eigen_matrixbase_type(shape), temp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))
                aux_statements.append(ast.Assign(temp, result))

                # Update declared temps
                declared_temps[exp] = temp

        elif isinstance(exp, Action):
            # Action computations are relatively inexpensive, so
            # we don't waste memory space on creating temps for
            # these expressions. However, we must create a temporary
            # for the actee coefficient (if we haven't already).
            actee, = exp.actee
            if actee not in declared_temps:
                # Declare a temporary for the coefficient
                V = actee.function_space()
                shape_array = [(Vi.finat_element.space_dimension(),
                                np.prod(Vi.shape)) for Vi in V.split()]
                ctemp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = sum(n * d for (n, d) in shape_array)
                typ = eigen_matrixbase_type(shape=(shape, ))
                aux_statements.append(ast.Decl(typ, ctemp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % ctemp))

                # Now we populate the temporary with the coefficient
                # information and insert in the right place.
                offset = 0
                for i, shp in enumerate(shape_array):
                    node_extent, dof_extent = shp
                    # Now we unpack the function and insert its entries into a
                    # 1D vector temporary
                    isym = ast.Symbol("i1")
                    jsym = ast.Symbol("j1")
                    tensor_index = ast.Sum(
                        offset, ast.Sum(ast.Prod(dof_extent, isym), jsym))

                    # Inner-loop running over dof_extent
                    coeff_sym = ast.Symbol(builder.coefficient(actee)[i],
                                           rank=(isym, jsym))
                    coeff_temp = ast.Symbol(ctemp, rank=(tensor_index, ))
                    inner_loop = ast.For(
                        ast.Decl("unsigned int", jsym, init=0),
                        ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                        ast.Assign(coeff_temp, coeff_sym))
                    # Outer-loop running over node_extent
                    loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                                   ast.Less(isym, node_extent),
                                   ast.Incr(isym, 1), inner_loop)

                    aux_statements.append(loop)
                    offset += node_extent * dof_extent

                # Update declared temporaries with the coefficient
                declared_temps[actee] = ctemp
        else:
            raise NotImplementedError(
                "Auxiliary expr type %s not currently implemented." %
                type(exp))

    return aux_statements
Esempio n. 10
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = coords_space.fiat_element

    names = {v[0] for v in expression._user_args}

    X = coords_element.tabulate(0, to_pts).values()[0]

    # Produce C array notation of X.
    X_str = "{{"+"},\n{".join([",".join(map(str, x)) for x in X.T])+"}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError("cannot use 'x' as a user-defined Expression variable")
    ass_exp = [ast.Assign(ast.Symbol(A, (k,), ((len(expression.code), i),)),
                          ast.FlatBlock("%s" % code))
               for i, code in enumerate(expression.code)]
    vals = {
        "X": X,
        "x": x,
        "x_": x_,
        "k": k,
        "d": d,
        "i": i_,
        "x_array": X_str,
        "dim": coords_space.dim,
        "xndof": coords_element.space_dimension(),
        # FS will always either be a functionspace or
        # vectorfunctionspace, so just accessing dim here is safe
        # (we don't need to go through ufl_element.value_shape())
        "nfdof": to_element.space_dimension() * numpy.prod(fs.dim, dtype=int),
        "ndof": to_element.space_dimension(),
        "assign_dim": numpy.prod(expression.value_shape(), dtype=int)
    }
    init = ast.FlatBlock("""
const double %(X)s[%(ndof)d][%(xndof)d] = %(x_array)s;

double %(x)s[%(dim)d];
const double pi = 3.141592653589793;

""" % vals)
    block = ast.FlatBlock("""
for (unsigned int %(d)s=0; %(d)s < %(dim)d; %(d)s++) {
  %(x)s[%(d)s] = 0;
  for (unsigned int %(i)s=0; %(i)s < %(xndof)d; %(i)s++) {
        %(x)s[%(d)s] += %(X)s[%(k)s][%(i)s] * %(x_)s[%(i)s][%(d)s];
  };
};

""" % vals)
    loop = ast.c_for(k, "%(ndof)d" % vals, ast.Block([block] + ass_exp,
                                                     open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(ast.FlatBlock("const double %s = *%s_;" %
                                           (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl("void", "expression_kernel",
                              [ast.Decl("double", ast.Symbol(A, (int("%(nfdof)d" % vals),))),
                               ast.Decl("double**", x_)] + user_args,
                              ast.Block(user_init + [init, loop],
                                        open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code, kernel_code.name), False, tuple(coefficients)
Esempio n. 11
0
def _generate_element_tensor(integrals, sets, optimise_parameters, parameters):
    "Construct quadrature code for element tensors."

    # Prefetch formats to speed up code generation.
    f_comment    = format["comment"]
    f_ip         = format["integration points"]
    f_I          = format["ip constant"]
    f_loop       = format["generate loop"]
    f_ip_coords  = format["generate ip coordinates"]
    f_coords     = format["coordinate_dofs"]
    f_double     = format["float declaration"]
    f_decl       = format["declaration"]
    f_X          = format["ip coordinates"]
    f_C          = format["conditional"]


    # Initialise return values.
    tensor_ops_count = 0

    ffc_assert(1 == len(integrals), "This function is not capable of handling multiple integrals.")

    # We receive a dictionary {num_points: form,}.
    # Loop points and forms.
    for points, terms, functions, ip_consts, coordinate, conditionals in integrals:

        nest_ir = []
        ip_ir = []
        num_ops = 0

        # Generate code to compute coordinates if used.
        if coordinate:
            raise RuntimeError("Don't know how to compute coordinates")
            # Left in place for posterity
            name, gdim, ip, r = coordinate
            element_code += ["", f_comment("Declare array to hold physical coordinate of quadrature point.")]
            element_code += [f_decl(f_double, f_X(points, gdim))]
            ops, coord_code = f_ip_coords(gdim, points, name, ip, r)
            ip_code += ["", f_comment("Compute physical coordinate of quadrature point, operations: %d." % ops)]
            ip_code += [coord_code]
            num_ops += ops
            # Update used psi tables and transformation set.
            sets[1].add(name)
            sets[3].add(f_coords(r))

        # Generate code to compute function values.
        if functions:
            const_func_code, func_code, ops = _generate_functions(functions, sets)
            nest_ir += const_func_code
            ip_ir += func_code
            num_ops += ops

        # Generate code to compute conditionals (might depend on coordinates
        # and function values so put here).
        # TODO: Some conditionals might only depend on geometry so they
        # should be moved outside if possible.
        if conditionals:
            ip_ir.append(pyop2.Decl(f_double, c_sym(f_C(len(conditionals)))))
            # Sort conditionals (need to in case of nested conditionals).
            reversed_conds = dict([(n, (o, e)) for e, (t, o, n) in conditionals.items()])
            for num in range(len(conditionals)):
                name = format["conditional"](num)
                ops, expr = reversed_conds[num]
                ip_ir.append(pyop2.Assign(c_sym(name), visit_rhs(expr)))
                num_ops += ops

        # Generate code for ip constant declarations.
        # TODO: this code should be removable as only executed when ffc's optimisations are on
        ip_const_ops, ip_const_code = generate_aux_constants(ip_consts, f_I,\
                                        format["assign"], True)
        if len(ip_const_code) > 0:
            raise RuntimeError("IP Const code not supported")
        num_ops += ip_const_ops

        # Generate code to evaluate the element tensor.
        code, ops = _generate_integral_ir(points, terms, sets, optimise_parameters, parameters)
        num_ops += ops
        tensor_ops_count += num_ops*points
        ip_ir += code

        # Loop code over all IPs.
        # @@@: for (ip ...) { A[0][0] += ... }
        if points > 1:
            it_var = pyop2.Symbol(f_ip, ())
            nest_ir += [pyop2.For(pyop2.Decl("int", it_var, c_sym(0)),
                                  pyop2.Less(it_var, c_sym(points)),
                                  pyop2.Incr(it_var, c_sym(1)),
                                  pyop2.Block(ip_ir, open_scope=True))]
        else:
            nest_ir += ip_ir

    return (nest_ir, tensor_ops_count)
Esempio n. 12
0
def build_hard_fusion_kernel(base_loop, fuse_loop, fusion_map, loop_chain_index):
    """
    Build AST and :class:`Kernel` for two loops suitable to hard fusion.

    The AST consists of three functions: fusion, base, fuse. base and fuse
    are respectively the ``base_loop`` and the ``fuse_loop`` kernels, whereas
    fusion is the orchestrator that invokes, for each ``base_loop`` iteration,
    base and, if still to be executed, fuse.

    The orchestrator has the following structure: ::

        fusion (buffer, ..., executed):
            base (buffer, ...)
            for i = 0 to arity:
                if not executed[i]:
                    additional pointer staging required by kernel2
                    fuse (sub_buffer, ...)
                    insertion into buffer

    The executed array tracks whether the i-th iteration (out of /arity/)
    adjacent to the main kernel1 iteration has been executed.
    """

    finder = Find((ast.FunDecl, ast.PreprocessNode))

    base = base_loop.kernel
    base_ast = dcopy(base._ast)
    base_info = finder.visit(base_ast)
    base_headers = base_info[ast.PreprocessNode]
    base_fundecl = base_info[ast.FunDecl]
    assert len(base_fundecl) == 1
    base_fundecl = base_fundecl[0]

    fuse = fuse_loop.kernel
    fuse_ast = dcopy(fuse._ast)
    fuse_info = finder.visit(fuse_ast)
    fuse_headers = fuse_info[ast.PreprocessNode]
    fuse_fundecl = fuse_info[ast.FunDecl]
    assert len(fuse_fundecl) == 1
    fuse_fundecl = fuse_fundecl[0]

    # Create /fusion/ arguments and signature
    body = ast.Block([])
    fusion_name = '%s_%s' % (base_fundecl.name, fuse_fundecl.name)
    fusion_args = dcopy(base_fundecl.args + fuse_fundecl.args)
    fusion_fundecl = ast.FunDecl(base_fundecl.ret, fusion_name, fusion_args, body)

    # Make sure kernel and variable names are unique
    base_fundecl.name = "%s_base" % base_fundecl.name
    fuse_fundecl.name = "%s_fuse" % fuse_fundecl.name
    for i, decl in enumerate(fusion_args):
        decl.sym.symbol += '_%d' % i

    # Filter out duplicate arguments, and append extra arguments to the fundecl
    binding = WeakFilter().kernel_args([base_loop, fuse_loop], fusion_fundecl)
    fusion_args += [ast.Decl('int*', 'executed'),
                    ast.Decl('int*', 'fused_iters'),
                    ast.Decl('int', 'i')]

    # Which args are actually used in /fuse/, but not in /base/ ? The gather for
    # such arguments is moved to /fusion/, to avoid usless memory LOADs
    base_dats = set(a.data for a in base_loop.args)
    fuse_dats = set(a.data for a in fuse_loop.args)
    unshared = OrderedDict()
    for arg, decl in binding.items():
        if arg.data in fuse_dats - base_dats:
            unshared.setdefault(decl, arg)

    # Track position of Args that need a postponed gather
    # Can't track Args themselves as they change across different parloops
    fargs = {fusion_args.index(i): ('postponed', False) for i in unshared.keys()}
    fargs.update({len(set(binding.values())): ('onlymap', True)})

    # Add maps for arguments that need a postponed gather
    for decl, arg in unshared.items():
        decl_pos = fusion_args.index(decl)
        fusion_args[decl_pos].sym.symbol = arg.c_arg_name()
        if arg._is_indirect:
            fusion_args[decl_pos].sym.rank = ()
            fusion_args.insert(decl_pos + 1, ast.Decl('int*', arg.c_map_name(0, 0)))

    # Append the invocation of /base/; then, proceed with the invocation
    # of the /fuse/ kernels
    base_funcall_syms = [binding[a].sym.symbol for a in base_loop.args]
    body.children.append(ast.FunCall(base_fundecl.name, *base_funcall_syms))

    for idx in range(fusion_map.arity):

        fused_iter = ast.Assign('i', ast.Symbol('fused_iters', (idx,)))
        fuse_funcall = ast.FunCall(fuse_fundecl.name)
        if_cond = ast.Not(ast.Symbol('executed', ('i',)))
        if_update = ast.Assign(ast.Symbol('executed', ('i',)), 1)
        if_body = ast.Block([fuse_funcall, if_update], open_scope=True)
        if_exec = ast.If(if_cond, [if_body])
        body.children.extend([ast.FlatBlock('\n'), fused_iter, if_exec])

        # Modify the /fuse/ kernel
        # This is to take into account that many arguments are shared with
        # /base/, so they will only staged once for /base/. This requires
        # tweaking the way the arguments are declared and accessed in /fuse/.
        # For example, the shared incremented array (called /buffer/ in
        # the pseudocode in the comment above) now needs to take offsets
        # to be sure the locations that /base/ is supposed to increment are
        # actually accessed. The same concept apply to indirect arguments.
        init = lambda v: '{%s}' % ', '.join([str(j) for j in v])
        for i, fuse_loop_arg in enumerate(fuse_loop.args):
            fuse_kernel_arg = binding[fuse_loop_arg]

            buffer_name = '%s_vec' % fuse_kernel_arg.sym.symbol
            fuse_funcall_sym = ast.Symbol(buffer_name)

            # What kind of temporaries do we need ?
            if fuse_loop_arg.access == INC:
                op, lvalue, rvalue = ast.Incr, fuse_kernel_arg.sym.symbol, buffer_name
                stager = lambda b, l: b.children.extend(l)
                indexer = lambda indices: [(k, j) for j, k in enumerate(indices)]
                pointers = []
            elif fuse_loop_arg.access == READ:
                op, lvalue, rvalue = ast.Assign, buffer_name, fuse_kernel_arg.sym.symbol
                stager = lambda b, l: [b.children.insert(0, j) for j in reversed(l)]
                indexer = lambda indices: [(j, k) for j, k in enumerate(indices)]
                pointers = list(fuse_kernel_arg.pointers)

            # Now gonna handle arguments depending on their type and rank ...

            if fuse_loop_arg._is_global:
                # ... Handle global arguments. These can be dropped in the
                # kernel without any particular fiddling
                fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol)

            elif fuse_kernel_arg in unshared:
                # ... Handle arguments that appear only in /fuse/
                staging = unshared[fuse_kernel_arg].c_vec_init(False).split('\n')
                rvalues = [ast.FlatBlock(j.split('=')[1]) for j in staging]
                lvalues = [ast.Symbol(buffer_name, (j,)) for j in range(len(staging))]
                staging = [ast.Assign(j, k) for j, k in zip(lvalues, rvalues)]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (len(staging),))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol,
                                       qualifiers=fuse_kernel_arg.qual,
                                       pointers=list(pointers))

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_mat:
                # ... Handle Mats
                staging = []
                for b in fused_inc_arg._block_shape:
                    for rc in b:
                        lvalue = ast.Symbol(lvalue, (idx, idx),
                                            ((rc[0], 'j'), (rc[1], 'k')))
                        rvalue = ast.Symbol(rvalue, ('j', 'k'))
                        staging = ItSpace(mode=0).to_for([(0, rc[0]), (0, rc[1])],
                                                         ('j', 'k'),
                                                         [op(lvalue, rvalue)])[:1]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (fuse_kernel_arg.sym.rank,))
                buffer_init = ast.ArrayInit(init([init([0.0])]))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                       qualifiers=fuse_kernel_arg.qual, pointers=pointers)

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_indirect:
                cdim = fuse_loop_arg.data.cdim

                if cdim == 1 and fuse_kernel_arg.sym.rank:
                    # [Special case]
                    # ... Handle rank 1 indirect arguments that appear in both
                    # /base/ and /fuse/: just point into the right location
                    rank = (idx,) if fusion_map.arity > 1 else ()
                    fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol, rank)

                else:
                    # ... Handle indirect arguments. At the C level, these arguments
                    # are of pointer type, so simple pointer arithmetic is used
                    # to ensure the kernel accesses are to the correct locations
                    fuse_arity = fuse_loop_arg.map.arity
                    base_arity = fuse_arity*fusion_map.arity
                    size = fuse_arity*cdim

                    # Set the proper storage layout before invoking /fuse/
                    ofs_vals = [[base_arity*j + k for k in range(fuse_arity)]
                                for j in range(cdim)]
                    ofs_vals = [[fuse_arity*j + k for k in flatten(ofs_vals)]
                                for j in range(fusion_map.arity)]
                    ofs_vals = list(flatten(ofs_vals))
                    indices = [ofs_vals[idx*size + j] for j in range(size)]

                    staging = [op(ast.Symbol(lvalue, (j,)), ast.Symbol(rvalue, (k,)))
                               for j, k in indexer(indices)]

                    # Set up the temporary
                    buffer_symbol = ast.Symbol(buffer_name, (size,))
                    if fuse_loop_arg.access == INC:
                        buffer_init = ast.ArrayInit(init([0.0]))
                    else:
                        buffer_init = ast.EmptyStatement()
                        pointers.pop()
                    buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                           qualifiers=fuse_kernel_arg.qual,
                                           pointers=pointers)

                    # Update the if-then AST body
                    stager(if_exec.children[0], staging)
                    if_exec.children[0].children.insert(0, buffer_decl)

            else:
                # Nothing special to do for direct arguments
                pass

            # Finally update the /fuse/ funcall
            fuse_funcall.children.append(fuse_funcall_sym)

    fused_headers = set([str(h) for h in base_headers + fuse_headers])
    fused_ast = ast.Root([ast.PreprocessNode(h) for h in fused_headers] +
                         [base_fundecl, fuse_fundecl, fusion_fundecl])

    return Kernel([base, fuse], fused_ast, loop_chain_index), fargs
Esempio n. 13
0
    def ast_matmul(self, F_a, implementation='optimized'):
        """Generate an AST for a PyOP2 kernel performing a matrix-vector multiplication."""

        # The number of dofs on each element is /ndofs*cdim/
        F_a_fs = F_a.function_space()
        ndofs = F_a_fs.fiat_element.entity_dofs()
        ndofs = sum(self.mesh.make_dofs_per_plex_entity(ndofs))
        cdim = F_a_fs.dim
        name = 'mat_vec_mul_kernel_%s' % F_a_fs.name

        identifier = (ndofs, cdim, name, implementation)
        if identifier in self.asts:
            return self.asts[identifier]

        from coffee import isa, options
        if cdim and cdim % isa['dp_reg'] == 0:
            simd_pragma = '#pragma simd reduction(+:sum)'
        else:
            simd_pragma = ''

        # Craft the AST
        if implementation == 'optimized' and cdim >= 4:
            body = ast.Incr(
                ast.Symbol('sum'),
                ast.Prod(
                    ast.Symbol('A', ('i', ),
                               ((ndofs * cdim, 'j*%d + k' % cdim), )),
                    ast.Symbol('B', ('j', 'k'))))
            body = ast.c_for('k', cdim, body, simd_pragma).children[0]
            body = [
                ast.Decl('const int',
                         ast.Symbol('index'),
                         init=ast.Symbol('i%%%d' % cdim)),
                ast.Decl('double', ast.Symbol('sum'), init=ast.Symbol('0.0')),
                ast.c_for('j', ndofs, body).children[0],
                ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'index')), 'sum')
            ]
            body = ast.Block([ast.c_for('i', ndofs * cdim, body).children[0]])
            funargs = [
                ast.Decl('double* restrict', 'A'),
                ast.Decl('double *restrict *restrict', 'B'),
                ast.Decl('double *restrict *', 'C')
            ]
            fundecl = ast.FunDecl('void', name, funargs, body,
                                  ['static', 'inline'])
        else:
            body = ast.Incr(
                ast.Symbol('C', ('i/%d' % cdim, 'index')),
                ast.Prod(
                    ast.Symbol('A', ('i', ),
                               ((ndofs * cdim, 'j*%d + k' % cdim), )),
                    ast.Symbol('B', ('j', 'k'))))
            body = ast.c_for('k', cdim, body).children[0]
            body = [
                ast.Decl('const int',
                         ast.Symbol('index'),
                         init=ast.Symbol('i%%%d' % cdim)),
                ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'index' % cdim)),
                           '0.0'),
                ast.c_for('j', ndofs, body).children[0]
            ]
            body = ast.Block([ast.c_for('i', ndofs * cdim, body).children[0]])
            funargs = [
                ast.Decl('double* restrict', 'A'),
                ast.Decl('double *restrict *restrict', 'B'),
                ast.Decl('double *restrict *', 'C')
            ]
            fundecl = ast.FunDecl('void', name, funargs, body,
                                  ['static', 'inline'])

        # Track the AST for later fast retrieval
        self.asts[identifier] = fundecl

        return fundecl
Esempio n. 14
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a SLATE expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the SLATE expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of ufl forms.
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError(
            "Expecting a `slate.TensorBase` expression, not a %r" % slate_expr)

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # Initialize shape and statements list
    shape = slate_expr.shape
    statements = []

    # Create a builder for the SLATE expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate and facet symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cellfacetsym = ast.Symbol("cell_facets")
    inc = []

    # Now we construct the list of statements to provide to the builder
    context_temps = builder.temps.copy()
    for exp, t in context_temps.items():
        statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
        statements.append(ast.FlatBlock("%s.setZero();\n" % t))

        for splitkernel in builder.kernel_exprs[exp]:
            clist = []
            index = splitkernel.indices
            kinfo = splitkernel.kinfo
            integral_type = kinfo.integral_type

            if integral_type not in [
                    "cell", "interior_facet", "exterior_facet"
            ]:
                raise NotImplementedError(
                    "Integral type %s not currently supported." %
                    integral_type)

            coordinates = exp.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords
            else:
                coords = coordinates

            for cindex in kinfo.coefficient_map:
                c = exp.coefficients()[cindex]
                # Handles both mixed and non-mixed coefficient cases
                clist.extend(builder.extract_coefficient(c))

            inc.extend(kinfo.kernel._include_dirs)

            tensor = eigen_tensor(exp, t, index)

            if integral_type in ["interior_facet", "exterior_facet"]:
                builder.require_cell_facets()
                itsym = ast.Symbol("i0")
                clist.append(ast.FlatBlock("&%s" % itsym))
                loop_body = []
                nfacet = exp.ufl_domain().ufl_cell().num_facets()

                if integral_type == "exterior_facet":
                    checker = 1
                else:
                    checker = 0
                loop_body.append(
                    ast.If(
                        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )),
                               checker), [
                                   ast.Block([
                                       ast.FunCall(kinfo.kernel.name, tensor,
                                                   coordsym, *clist)
                                   ],
                                             open_scope=True)
                               ]))
                loop = ast.For(ast.Decl("unsigned int", itsym, init=0),
                               ast.Less(itsym, nfacet), ast.Incr(itsym, 1),
                               loop_body)
                statements.append(loop)
            else:
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    # Now we handle any terms that require auxiliary data (if any)
    if bool(builder.aux_exprs):
        aux_temps, aux_statements = auxiliary_information(builder)
        context_temps.update(aux_temps)
        statements.extend(aux_statements)

    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, context_temps))
    statements.append(ast.Assign(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]
    for c in slate_expr.coefficients():
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([
            ast.Decl(ctype, sym_c) for sym_c in builder.extract_coefficient(c)
        ])

    if builder.needs_cell_facets:
        args.append(ast.Decl("char *", cellfacetsym))

    macro_kernel_name = "compile_slate"
    kernel_ast, oriented = builder.construct_ast(
        name=macro_kernel_name, args=args, statements=ast.Block(statements))

    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type="cell",
                       oriented=oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=range(len(slate_expr.coefficients())),
                       needs_cell_facets=builder.needs_cell_facets)
    idx = tuple([0] * slate_expr.rank)

    return (SplitKernel(idx, kinfo), )
Esempio n. 15
0
def ker_init():
    return ast.FunDecl('void', 'ker_init',
                       [ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=[''])],
                       ast.Block([ast.Assign(ast.Symbol('B', (0,)), 0)]))
Esempio n. 16
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = create_element(coords_space.ufl_element(),
                                    vector_is_mixed=False)

    names = {v[0] for v in expression._user_args}

    X = list(coords_element.tabulate(0, to_pts).values())[0]

    # Produce C array notation of X.
    X_str = "{{" + "},\n{".join([",".join(map(str, x)) for x in X.T]) + "}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError(
            "cannot use 'x' as a user-defined Expression variable")
    ass_exp = [
        ast.Assign(ast.Symbol(A, (k, ), ((len(expression.code), i), )),
                   ast.FlatBlock("%s" % code))
        for i, code in enumerate(expression.code)
    ]

    dim = coords_space.value_size
    ndof = to_element.space_dimension()
    xndof = coords_element.space_dimension()
    nfdof = to_element.space_dimension() * numpy.prod(fs.value_size, dtype=int)

    init_X = ast.Decl(typ="double",
                      sym=ast.Symbol(X, rank=(ndof, xndof)),
                      qualifiers=["const"],
                      init=X_str)
    init_x = ast.Decl(typ="double",
                      sym=ast.Symbol(x, rank=(coords_space.value_size, )))
    init_pi = ast.Decl(typ="double",
                       sym="pi",
                       qualifiers=["const"],
                       init="3.141592653589793")
    init = ast.Block([init_X, init_x, init_pi])
    incr_x = ast.Incr(
        ast.Symbol(x, rank=(d, )),
        ast.Prod(ast.Symbol(X, rank=(k, i_)),
                 ast.Symbol(x_, rank=(ast.Sum(ast.Prod(i_, dim), d), ))))
    assign_x = ast.Assign(ast.Symbol(x, rank=(d, )), 0)
    loop_x = ast.For(init=ast.Decl("unsigned int", i_, 0),
                     cond=ast.Less(i_, xndof),
                     incr=ast.Incr(i_, 1),
                     body=[incr_x])

    block = ast.For(init=ast.Decl("unsigned int", d, 0),
                    cond=ast.Less(d, dim),
                    incr=ast.Incr(d, 1),
                    body=[assign_x, loop_x])
    loop = ast.c_for(k, ndof, ast.Block([block] + ass_exp, open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(
                ast.FlatBlock("const double %s = *%s_;" %
                              (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl(
        "void", "expression_kernel", [
            ast.Decl("double", ast.Symbol(A, (nfdof, ))),
            ast.Decl("double*", x_)
        ] + user_args, ast.Block(user_init + [init, loop], open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code,
                      kernel_code.name), False, tuple(coefficients)
Esempio n. 17
0
    def exterior_facet_boundary_node_map(self, method):
        '''The :class:`pyop2.Map` from exterior facets to the nodes on
        those facets. Note that this differs from
        :meth:`exterior_facet_node_map` in that only surface nodes
        are referenced, not all nodes in cells touching the surface.

        :arg method: The method for determining boundary nodes. See
            :class:`~.bcs.DirichletBC`.
        '''

        el = self.fiat_element

        dim = self._mesh.facet_dimension()

        if method == "topological":
            boundary_dofs = el.entity_closure_dofs()[dim]
        elif method == "geometric":
            boundary_dofs = el.facet_support_dofs()

        nodes_per_facet = \
            len(boundary_dofs[0])

        # HACK ALERT
        # The facet set does not have a halo associated with it, since
        # we only construct halos for DoF sets.  Fortunately, this
        # loop is direct and we already have all the correct
        # information available locally.  So We fake a set of the
        # correct size and carry out a direct loop
        facet_set = op2.Set(self._mesh.exterior_facets.set.total_size)

        fs_dat = op2.Dat(facet_set**el.space_dimension(),
                         data=self.exterior_facet_node_map().values_with_halo)

        facet_dat = op2.Dat(facet_set**nodes_per_facet, dtype=np.int32)

        local_facet_nodes = np.array(
            [dofs for e, dofs in boundary_dofs.iteritems()])

        # Helper function to turn the inner index of an array into c
        # array literals.
        c_array = lambda xs: "{" + ", ".join(map(str, xs)) + "}"

        body = ast.Block([
            ast.Decl("int",
                     ast.Symbol("l_nodes",
                                (len(el.get_reference_element().topology[dim]),
                                 nodes_per_facet)),
                     init=ast.ArrayInit(
                         c_array(map(c_array, local_facet_nodes))),
                     qualifiers=["const"]),
            ast.For(
                ast.Decl("int", "n", 0), ast.Less("n", nodes_per_facet),
                ast.Incr("n", 1),
                ast.Assign(
                    ast.Symbol("facet_nodes", ("n", )),
                    ast.Symbol("cell_nodes", ("l_nodes[facet[0]][n]", ))))
        ])

        kernel = op2.Kernel(
            ast.FunDecl("void", "create_bc_node_map", [
                ast.Decl("int*", "cell_nodes"),
                ast.Decl("int*", "facet_nodes"),
                ast.Decl("unsigned int*", "facet")
            ], body), "create_bc_node_map")

        local_facet_dat = op2.Dat(
            facet_set**self._mesh.exterior_facets._rank,
            self._mesh.exterior_facets.local_facet_dat.data_ro_with_halos,
            dtype=np.uintc)
        op2.par_loop(kernel, facet_set, fs_dat(op2.READ), facet_dat(op2.WRITE),
                     local_facet_dat(op2.READ))

        if isinstance(self._mesh, mesh_t.ExtrudedMesh):
            offset = self.offset[boundary_dofs[0]]
        else:
            offset = None
        return op2.Map(facet_set,
                       self.node_set,
                       nodes_per_facet,
                       facet_dat.data_ro_with_halos,
                       name="exterior_facet_boundary_node",
                       offset=offset)
Esempio n. 18
0
def coefficient_temporaries(builder, declared_temps):
    """Generates coefficient temporary statements for assigning
    coefficients to vector temporaries.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg declared_temps: A `dict` keeping track of all declared
        temporaries. This dictionary is updated as coefficients
        are assigned temporaries.

    'AssembledVector's require creating coefficient temporaries to
    store data. The temporaries are created by inspecting the function
    space of the coefficient to compute node and dof extents. The
    coefficient is then assigned values by looping over both the node
    extent and dof extent (double FOR-loop). A double FOR-loop is needed
    for each function space (if the function space is mixed, then a loop
    will be constructed for each component space). The general structure
    of each coefficient loop will be:

         FOR (i1=0; i1<node_extent; i1++):
             FOR (j1=0; j1<dof_extent; j1++):
                 VT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1]
                 VT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1]
                 .
                 .
                 .

    where wT0, wT1, ... are temporaries for coefficients sharing the
    same node and dof extents. The offset is computed based on whether
    the function space is mixed. The offset is always 0 for non-mixed
    coefficients. If the coefficient is mixed, then the offset is
    incremented by the total number of nodal unknowns associated with
    the component spaces of the mixed space.
    """
    statements = [ast.FlatBlock("/* Coefficient temporaries */\n")]
    j = ast.Symbol("j1")
    loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")]
    for dofs, cinfo_list in builder.coefficient_vecs.items():
        # Collect all coefficients which share the same node/dof extent
        assignments = []
        for cinfo in cinfo_list:
            fs_i = cinfo.space_index
            offset = cinfo.offset_index
            c_shape = cinfo.shape
            vector = cinfo.vector
            function = vector._function
            t = cinfo.local_temp

            if vector not in declared_temps:
                # Declare and initialize coefficient temporary
                c_type = eigen_matrixbase_type(shape=c_shape)
                statements.append(ast.Decl(c_type, t))
                declared_temps[vector] = t

            # Assigning coefficient values into temporary
            coeff_sym = ast.Symbol(builder.coefficient(function)[fs_i],
                                   rank=(j, ))
            index = ast.Sum(offset, j)
            coeff_temp = ast.Symbol(t, rank=(index, ))
            assignments.append(ast.Assign(coeff_temp, coeff_sym))

        # loop over dofs
        loop = ast.For(ast.Decl("unsigned int", j, init=0), ast.Less(j, dofs),
                       ast.Incr(j, 1), assignments)

        loops.append(loop)

    statements.extend(loops)

    return statements
Esempio n. 19
0
def statement_initialise(leaf, parameters):
    if parameters.declare[leaf]:
        return coffee.Decl(parameters.scalar_type, _decl_symbol(leaf.indexsum, parameters), 0.0)
    else:
        return coffee.Assign(_ref_symbol(leaf.indexsum, parameters), 0.0)
Esempio n. 20
0
    def init_cell_orientations(self, expr):
        """Compute and initialise :attr:`cell_orientations` relative to a specified orientation.

        :arg expr: an :class:`.Expression` evaluated to produce a
             reference normal direction.

        """
        import firedrake.function as function
        import firedrake.functionspace as functionspace

        if expr.value_shape()[0] != 3:
            raise NotImplementedError('Only implemented for 3-vectors')
        if self.ufl_cell() not in (ufl.Cell('triangle', 3), ufl.Cell("quadrilateral", 3), ufl.OuterProductCell(ufl.Cell('interval'), ufl.Cell('interval'), gdim=3)):
            raise NotImplementedError('Only implemented for triangles and quadrilaterals embedded in 3d')

        if hasattr(self.topology, '_cell_orientations'):
            raise RuntimeError("init_cell_orientations already called, did you mean to do so again?")

        v0 = lambda x: ast.Symbol("v0", (x,))
        v1 = lambda x: ast.Symbol("v1", (x,))
        n = lambda x: ast.Symbol("n", (x,))
        x = lambda x: ast.Symbol("x", (x,))
        coords = lambda x, y: ast.Symbol("coords", (x, y))

        body = []
        body += [ast.Decl("double", v(3)) for v in [v0, v1, n, x]]
        body.append(ast.Decl("double", "dot"))
        body.append(ast.Assign("dot", 0.0))
        body.append(ast.Decl("int", "i"))

        # if triangle, use v0 = x1 - x0, v1 = x2 - x0
        # otherwise, for the various quads, use v0 = x2 - x0, v1 = x1 - x0
        # recall reference element ordering:
        # triangle: 2        quad: 1 3
        #           0 1            0 2
        if self.ufl_cell() == ufl.Cell('triangle', 3):
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))
        else:
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))

        # n = v0 x v1
        body.append(ast.Assign(n(0), ast.Sub(ast.Prod(v0(1), v1(2)), ast.Prod(v0(2), v1(1)))))
        body.append(ast.Assign(n(1), ast.Sub(ast.Prod(v0(2), v1(0)), ast.Prod(v0(0), v1(2)))))
        body.append(ast.Assign(n(2), ast.Sub(ast.Prod(v0(0), v1(1)), ast.Prod(v0(1), v1(0)))))

        body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                            [ast.Incr(x(j), coords("i", j)) for j in range(3)]))

        body.extend([ast.FlatBlock("dot += (%(x)s) * n[%(i)d];\n" % {"x": x_, "i": i})
                     for i, x_ in enumerate(expr.code)])
        body.append(ast.Assign("orientation[0][0]", ast.Ternary(ast.Less("dot", 0), 1, 0)))

        kernel = op2.Kernel(ast.FunDecl("void", "cell_orientations",
                                        [ast.Decl("int**", "orientation"),
                                         ast.Decl("double**", "coords")],
                                        ast.Block(body)),
                            "cell_orientations")

        # Build the cell orientations as a DG0 field (so that we can
        # pass it in for facet integrals and the like)
        fs = functionspace.FunctionSpace(self, 'DG', 0)
        cell_orientations = function.Function(fs, name="cell_orientations", dtype=np.int32)
        op2.par_loop(kernel, self.cell_set,
                     cell_orientations.dat(op2.WRITE, cell_orientations.cell_node_map()),
                     self.coordinates.dat(op2.READ, self.coordinates.cell_node_map()))
        self.topology._cell_orientations = cell_orientations
Esempio n. 21
0
    def exterior_facet_boundary_node_map(self, V, method):
        """Return the :class:`pyop2.Map` from exterior facets to nodes
        on the boundary.

        :arg V: The function space.
        :arg method:  The method for determining boundary nodes.  See
           :class:`~.DirichletBC` for details.
        """
        try:
            return self.map_caches["boundary_node"][method]
        except KeyError:
            pass
        el = V.finat_element

        dim = self.mesh.facet_dimension()

        if method == "topological":
            boundary_dofs = el.entity_closure_dofs()[dim]
        elif method == "geometric":
            # This function is only called on extruded meshes when
            # asking for the nodes that live on the "vertical"
            # exterior facets.
            boundary_dofs = entity_support_dofs(el, dim)

        nodes_per_facet = \
            len(boundary_dofs[0])

        # HACK ALERT
        # The facet set does not have a halo associated with it, since
        # we only construct halos for DoF sets.  Fortunately, this
        # loop is direct and we already have all the correct
        # information available locally.  So We fake a set of the
        # correct size and carry out a direct loop
        facet_set = op2.Set(self.mesh.exterior_facets.set.total_size,
                            comm=self.mesh.comm)

        fs_dat = op2.Dat(
            facet_set**el.space_dimension(),
            data=V.exterior_facet_node_map().values_with_halo.view())

        facet_dat = op2.Dat(facet_set**nodes_per_facet, dtype=IntType)

        # Ensure these come out in sorted order.
        local_facet_nodes = numpy.array(
            [boundary_dofs[e] for e in sorted(boundary_dofs.keys())])

        # Helper function to turn the inner index of an array into c
        # array literals.
        c_array = lambda xs: "{" + ", ".join(map(str, xs)) + "}"

        # AST for: l_nodes[facet[0]][n]
        rank_ast = ast.Symbol("l_nodes",
                              rank=(ast.Symbol("facet", rank=(0, )), "n"))

        body = ast.Block([
            ast.Decl("int",
                     ast.Symbol("l_nodes",
                                (len(el.cell.topology[dim]), nodes_per_facet)),
                     init=ast.ArrayInit(
                         c_array(map(c_array, local_facet_nodes))),
                     qualifiers=["const"]),
            ast.For(
                ast.Decl("int", "n", 0), ast.Less("n", nodes_per_facet),
                ast.Incr("n", 1),
                ast.Assign(ast.Symbol("facet_nodes", ("n", )),
                           ast.Symbol("cell_nodes", (rank_ast, ))))
        ])

        kernel = op2.Kernel(
            ast.FunDecl("void", "create_bc_node_map", [
                ast.Decl("%s*" % as_cstr(fs_dat.dtype), "cell_nodes"),
                ast.Decl("%s*" % as_cstr(facet_dat.dtype), "facet_nodes"),
                ast.Decl("unsigned int*", "facet")
            ], body), "create_bc_node_map")

        local_facet_dat = op2.Dat(
            facet_set**self.mesh.exterior_facets._rank,
            self.mesh.exterior_facets.local_facet_dat.data_ro_with_halos,
            dtype=numpy.uintc)
        op2.par_loop(kernel, facet_set, fs_dat(op2.READ), facet_dat(op2.WRITE),
                     local_facet_dat(op2.READ))

        if self.extruded:
            offset = self.offset[boundary_dofs[0]]
        else:
            offset = None
        val = op2.Map(facet_set,
                      self.node_set,
                      nodes_per_facet,
                      facet_dat.data_ro_with_halos,
                      name="exterior_facet_boundary_node",
                      offset=offset)
        self.map_caches["boundary_node"][method] = val
        return val
Esempio n. 22
0
def coefficient_temporaries(builder, declared_temps):
    """Generates coefficient temporary statements for assigning
    coefficients to vector temporaries.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information.
    :arg declared_temps: A `dict` keeping track of all declared
                         temporaries. This dictionary is updated
                         as coefficients are assigned temporaries.

    Action computations require creating coefficient temporaries to
    compute the matrix-vector product. The temporaries are created by
    inspecting the function space of the coefficient to compute node
    and dof extents. The coefficient is then assigned values by looping
    over both the node extent and dof extent (double FOR-loop). A double
    FOR-loop is needed for each function space (if the function space is
    mixed, then a loop will be constructed for each component space).
    The general structure of each coefficient loop will be:

         FOR (i1=0; i1<node_extent; i1++):
             FOR (j1=0; j1<dof_extent; j1++):
                 wT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1]
                 wT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1]
                 .
                 .
                 .

    where wT0, wT1, ... are temporaries for coefficients sharing the
    same node and dof extents. The offset is computed based on whether
    the function space is mixed. The offset is always 0 for non-mixed
    coefficients. If the coefficient is mixed, then the offset is
    incremented by the total number of nodal unknowns associated with
    the component spaces of the mixed space.
    """
    statements = [ast.FlatBlock("/* Coefficient temporaries */\n")]
    i_sym = ast.Symbol("i1")
    j_sym = ast.Symbol("j1")
    loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")]
    for (nodes, dofs), cinfo_list in builder.action_coefficients.items():
        # Collect all coefficients which share the same node/dof extent
        assignments = []
        for cinfo in cinfo_list:
            fs_i = cinfo.space_index
            offset = cinfo.offset_index
            c_shape = cinfo.shape
            actee = cinfo.coefficient

            if actee not in declared_temps:
                # Declare and initialize coefficient temporary
                c_type = eigen_matrixbase_type(shape=c_shape)
                t = ast.Symbol("wT%d" % len(declared_temps))
                statements.append(ast.Decl(c_type, t))
                statements.append(ast.FlatBlock("%s.setZero();\n" % t))
                declared_temps[actee] = t

            # Assigning coefficient values into temporary
            coeff_sym = ast.Symbol(builder.coefficient(actee)[fs_i],
                                   rank=(i_sym, j_sym))
            index = ast.Sum(offset, ast.Sum(ast.Prod(dofs, i_sym), j_sym))
            coeff_temp = ast.Symbol(t, rank=(index, ))
            assignments.append(ast.Assign(coeff_temp, coeff_sym))

        # Inner-loop running over dof extent
        inner_loop = ast.For(ast.Decl("unsigned int", j_sym, init=0),
                             ast.Less(j_sym, dofs), ast.Incr(j_sym, 1),
                             assignments)

        # Outer-loop running over node extent
        loop = ast.For(ast.Decl("unsigned int", i_sym, init=0),
                       ast.Less(i_sym, nodes), ast.Incr(i_sym, 1), inner_loop)

        loops.append(loop)

    statements.extend(loops)

    return statements