Esempio n. 1
0
    def __init__(self, data, twitterSession, fromCache=False):
        Timestamped.__init__(self)
        Hashable.__init__(self)

        if twitterSession is not None:
            assert isinstance(twitterSession, TwitterSession)

        self.data = Tree.make(data)
        if not fromCache:
            self.data.applyFunctionInTree(reverse_list, ['coordinates', 'coordinates']) # for use with leaflet.

        self.isDataNew = not fromCache

        twitterPlaceData = self.data.getFromTree(['place'])
        if twitterPlaceData is not None:
            self.twitter_place = Place(twitterPlaceData)
        else:
            self.twitter_place = None

        userJson = self.data.getFromTree(['user'])
        if userJson is None:
            self._user = None
        else:
            self._user = User(userJson, twitterSession=twitterSession, isAssociatedWithTweet=True, twitterPlace=self.twitter_place, currentLocationCoordinate=self.coordinate)

        if twitterSession is not None:
            self.instance_key = twitterSession.instance_key
        else:
            self.instance_key = None

        self.twitter_session = twitterSession
Esempio n. 2
0
    def __init__(self, data, twitterSession, fromCache=False):
        Timestamped.__init__(self)
        Hashable.__init__(self)

        if twitterSession is not None:
            assert isinstance(twitterSession, TwitterSession)


        self.data = Tree.make(data)
        if not fromCache:
            self.data.applyFunctionInTree(reverse_list, ['coordinates', 'coordinates']) # for use with leaflet.

        self.isDataNew = not fromCache

        twitterPlaceData = self.data.getFromTree(['place'])
        if twitterPlaceData is not None:
            self.twitter_place = Place(twitterPlaceData)
        else:
            self.twitter_place = None

        userJson = self.data.getFromTree(['user'])
        if userJson is None:
            self._user = None
        else:
            self._user = User(userJson, twitterSession=twitterSession, isAssociatedWithTweet=True, twitterPlace=self.twitter_place, currentLocationCoordinate=self.coordinate)

        if twitterSession is not None:
            self.instance_key = twitterSession.instance_key
        else:
            self.instance_key = None

        self.twitter_session = twitterSession
Esempio n. 3
0
    def __init__(self, userJson, twitterSession, fromCache=False, isFollowee=False, isAssociatedWithTweet=False, twitterPlace=None, currentLocationCoordinate=None, geocodeBias=None, knownFollowees=None):
        Hashable.__init__(self)
        Timestamped.__init__(self)

        if twitterSession is not None:
            assert isinstance(twitterSession, TwitterSession)

        if twitterPlace is not None:
            assert isinstance(twitterPlace, Place)

        if knownFollowees is None:
            knownFollowees = set()

        self.allow_geocode_external = True

        if userJson is None:
            self.data = Tree.make()
        else:
            self.data = Tree.make(userJson)

        # If false indicates that self.data is already in the cache,
        # so no point readding.
        self.isDataNew = not fromCache

        self.is_followee = isFollowee

        # This does not contain all followees, only followees known to our application
        # through follower enrichment.
        self.known_followees = knownFollowees

        self.is_associated_with_tweet = isAssociatedWithTweet
        self.twitter_session = twitterSession

        if twitterSession is not None:
            self.instance_key = twitterSession.instance_key
        else:
            self.instance_key = None

        self.queued_for_follower_enrichment = False
        self.current_location_coordinate = currentLocationCoordinate

        self.twitter_place = twitterPlace

        self.last_follower_enrichment_error = None
        self.follower_enrichment_progress = UserFollowerEnrichmentProgress(self)

        if self.num_followers is not None:
            self.twitter_calls_to_retrieve_follower_ids = math.ceil(float(self.num_followers) / float(TwitterSession.GET_FOLLOWER_IDS_QUANTITY_PER_TWITTER_CALL))
        else:
            self.twitter_calls_to_retrieve_follower_ids = 1

        self.geocoded_from = None
        self.geocode_bias = None

        self.analysers = None
Esempio n. 4
0
    def __init__(self, userJson, twitterSession, fromCache=False, isFollowee=False, isAssociatedWithTweet=False, twitterPlace=None, currentLocationCoordinate=None, geocodeBias=None, knownFollowees=None):
        Hashable.__init__(self)
        Timestamped.__init__(self)

        if twitterSession is not None:
            assert isinstance(twitterSession, TwitterSession)

        if twitterPlace is not None:
            assert isinstance(twitterPlace, Place)

        if knownFollowees is None:
            knownFollowees = set()

        self.allow_geocode_external = True

        if userJson is None:
            self.data = Tree.make()
        else:
            self.data = Tree.make(userJson)

        # If false indicates that self.data is already in the cache,
        # so no point readding.
        self.isDataNew = not fromCache

        self.is_followee = isFollowee

        # This does not contain all followees, only followees known to our application
        # through follower enrichment.
        self.known_followees = knownFollowees

        self.is_associated_with_tweet = isAssociatedWithTweet
        self.twitter_session = twitterSession

        if twitterSession is not None:
            self.instance_key = twitterSession.instance_key
        else:
            self.instance_key = None

        self.queued_for_follower_enrichment = False
        self.current_location_coordinate = currentLocationCoordinate

        self.twitter_place = twitterPlace

        self.last_follower_enrichment_error = None
        self.follower_enrichment_progress = UserFollowerEnrichmentProgress(self)

        if self.num_followers is not None:
            self.twitter_calls_to_retrieve_follower_ids = math.ceil(float(self.num_followers) / float(TwitterSession.GET_FOLLOWER_IDS_QUANTITY_PER_TWITTER_CALL))
        else:
            self.twitter_calls_to_retrieve_follower_ids = 1

        self.geocoded_from = None
        self.geocode_bias = None

        self.analysers = None
Esempio n. 5
0
        """
        Hash based on value of elements.

        >>> m = pmap({pbag([1, 2]): "it's here!"})
        >>> m[pbag([2, 1])]
        "it's here!"
        >>> pbag([1, 1, 2]) in m
        False
        """
        return hash(self._counts)


Container.register(PBag)
Iterable.register(PBag)
Sized.register(PBag)
Hashable.register(PBag)


def b(*elements):
    """
    Construct a persistent bag.

    Takes an arbitrary number of arguments to insert into the new persistent
    bag.

    >>> b(1, 2, 3, 2)
    pbag([1, 2, 2, 3])
    """
    return pbag(elements)

Esempio n. 6
0
        pmap({'a': 1, 'b': 2})

        The changes are kept in the evolver. An updated pmap can be created using the
        persistent() function on the evolver.

        >>> m2 = e.persistent()
        >>> m2
        pmap({'c': 3, 'b': 2})

        The new pmap will share data with the original pmap in the same way that would have
        been done if only using operations on the pmap.
        """
        return self._Evolver(self)

Mapping.register(PMap)
Hashable.register(PMap)


def _turbo_mapping(initial, pre_size):
    if pre_size:
        size = pre_size
    else:
        try:
            size = 2 * len(initial) or 8
        except Exception:
            # Guess we can't figure out the length. Give up on length hinting,
            # we can always reallocate later.
            size = 8

    buckets = size * [None]
Esempio n. 7
0
def get_vmc_version():
    import os
    from subprocess import check_output, CalledProcessError

    original_directory = os.getcwd()
    try:
        os.chdir(os.path.dirname(__file__))
        try:
            return check_output(["git", "describe", "--always"])
        except CalledProcessError:
            return None
    finally:
        os.chdir(original_directory)

import six
if six.PY3:
    import numpy
    from collections import Hashable
    from numbers import Integral

    # FIXME: track down why we are passing around these int64's anyway
    if not isinstance(numpy.int64, Integral):
        Integral.register(numpy.int64)
    if not isinstance(numpy.int64, Hashable):
        Hashable.register(numpy.int64)

    # FIXME: numpy.ndarray is Hashable in python2 but not python3.  Honestly, I
    # don't think it should be in either...
    Hashable.register(numpy.ndarray)
Esempio n. 8
0
        pmap({'a': 1, 'b': 2})

        The changes are kept in the evolver. An updated pmap can be created using the
        persistent() function on the evolver.

        >>> m2 = e.persistent()
        >>> m2
        pmap({'c': 3, 'b': 2})

        The new pmap will share data with the original pmap in the same way that would have
        been done if only using operations on the pmap.
        """
        return self._Evolver(self)

Mapping.register(PMap)
Hashable.register(PMap)


def _turbo_mapping(initial, pre_size):
    size = pre_size or (2 * len(initial)) or 8
    buckets = size * [None]

    if not isinstance(initial, Mapping):
        # Make a dictionary of the initial data if it isn't already,
        # that will save us some job further down since we can assume no
        # key collisions
        initial = dict(initial)

    for k, v in six.iteritems(initial):
        h = hash(k)
        index = h % size
Esempio n. 9
0
    return result


class NamedspaceMeta(type):
    "Metaclass for namedspace classes"

    @property
    def _field_names(self):
        return self._all_fields

    @property
    def _field_names_iter(self):
        return iter(self._all_fields)


_class_template = """\
class {typename}(object):
    __metaclass__ = NamedspaceMeta
    "{typename}({arg_list})"

    class FieldNameError(AttributeError, KeyError): pass
    class ReadOnlyNamedspaceError(TypeError): pass
    class ReadOnlyFieldError(TypeError): pass
    class MutableNamedspaceError(TypeError): pass

    _all_fields = all_fields
    _all_fields_set = all_fields_set
    _required_fields_set = required_fields_set
    _mutable_fields_set = mutable_fields_set
    _default_values = default_values
    _default_value_factories = default_value_factories
Esempio n. 10
0
        """
        Hash based on value of elements.

        >>> m = pmap({pbag([1, 2]): "it's here!"})
        >>> m[pbag([2, 1])]
        "it's here!"
        >>> pbag([1, 1, 2]) in m
        False
        """
        return hash(self._counts)


Container.register(PBag)
Iterable.register(PBag)
Sized.register(PBag)
Hashable.register(PBag)


def b(*elements):
    """
    Construct a persistent bag.

    Takes an arbitrary number of arguments to insert into the new persistent
    bag.

    >>> b(1, 2, 3, 2)
    pbag([1, 2, 2, 3])
    """
    return pbag(elements)

Esempio n. 11
0
    __slots__ = ('first', 'rest')

    def __new__(cls, first, rest):
        instance = super(PList, cls).__new__(cls)
        instance.first = first
        instance.rest = rest
        return instance

    def __bool__(self):
        return True

    __nonzero__ = __bool__


Sequence.register(PList)
Hashable.register(PList)


class _EmptyPList(_PListBase):
    __slots__ = ()

    def __bool__(self):
        return False

    __nonzero__ = __bool__

    @property
    def first(self):
        raise AttributeError("Empty PList has no first")

    @property
Esempio n. 12
0
                            type(index).__name__)

        if index >= 0:
            return self.popleft(index).left

        shifted = len(self) + index
        if shifted < 0:
            raise IndexError(
                "pdeque index {0} out of range {1}".format(index, len(self)), )
        return self.popleft(shifted).left

    index = Sequence.index


Sequence.register(PDeque)
Hashable.register(PDeque)


def pdeque(iterable=(), maxlen=None):
    """
    Return deque containing the elements of iterable. If maxlen is specified then
    len(iterable) - maxlen elements are discarded from the left to if len(iterable) > maxlen.

    >>> pdeque([1, 2, 3])
    pdeque([1, 2, 3])
    >>> pdeque([1, 2, 3, 4], maxlen=2)
    pdeque([3, 4], maxlen=2)
    """
    t = tuple(iterable)
    if maxlen is not None:
        t = t[-maxlen:]
Esempio n. 13
0
                result = result.pop(self._length - (index.stop % self._length))

            return result

        if not isinstance(index, Integral):
            raise TypeError("'%s' object cannot be interpreted as an index" % type(index).__name__)

        if index >= 0:
            return self.popleft(index).left

        return  self.pop(index).right

    index = Sequence.index

Sequence.register(PDeque)
Hashable.register(PDeque)


def pdeque(iterable=(), maxlen=None):
    """
    Return deque containing the elements of iterable. If maxlen is specified then
    len(iterable) - maxlen elements are discarded from the left to if len(iterable) > maxlen.

    >>> pdeque([1, 2, 3])
    pdeque([1, 2, 3])
    >>> pdeque([1, 2, 3, 4], maxlen=2)
    pdeque([3, 4], maxlen=2)
    """
    t = tuple(iterable)
    if maxlen is not None:
        t = t[-maxlen:]
Esempio n. 14
0
        4
        """
        return self._tolist().index(value, *args, **kwargs)

    def count(self, value):
        """
        Return the number of times that value appears in the vector.

        >>> v1 = v(1, 4, 3, 4)
        >>> v1.count(4)
        2
        """
        return self._tolist().count(value)

Sequence.register(PVector)
Hashable.register(PVector)

_EMPTY_VECTOR = PVector(0, SHIFT, [], [])


def _pvector(sequence=()):
    """
    Factory function, returns a new PVector object containing the elements in sequence.

    >>> v1 = pvector([1, 2, 3])
    >>> v1
    (1, 2, 3)
    """
    return _EMPTY_VECTOR.extend(sequence)

print "Container Abstract Base Class"
from collections import Container
print(Container.__subclasshook__(list))
print(Container.__subclasshook__(dict))
print(Container.__subclasshook__(set))
print(Container.__subclasshook__(tuple))
import string
print(Container.__subclasshook__(string))

class WorldContainer(Container):
    def __contains__(self, item):
        return False

print(Container.__subclasshook__(WorldContainer))
print(WorldContainer().__contains__(4))

print "Hashable Abstract Base Class"

from collections import Hashable
print(Hashable.__subclasshook__(string))

class WorldCHashable(Hashable):
    def __hash__(self, item):
        return id(item)

print(Hashable.__subclasshook__(WorldCHashable))
print(WorldCHashable().__hash__(4))


# to read more details https://docs.python.org/2/library/collections.html
Esempio n. 16
0
    __and__ = Set.__and__
    __or__ = Set.__or__
    __sub__ = Set.__sub__
    __xor__ = Set.__xor__

    issubset = __le__
    issuperset = __ge__
    union = __or__
    intersection = __and__
    difference = __sub__
    symmetric_difference = __xor__

    isdisjoint = Set.isdisjoint

Set.register(PSet)
Hashable.register(PSet)

_EMPTY_PSET = PSet(pmap())


def pset(iterable=(), pre_size=8):
    """
    Creates a persistent set from iterable. Optionally takes a sizing parameter equivalent to that
    used for :py:func:`pmap`.

    >>> s1 = pset([1, 2, 3, 2])
    >>> s1
    pset([1, 2, 3])
    """
    if not iterable:
        return _EMPTY_PSET
Esempio n. 17
0
    __and__ = Set.__and__
    __or__ = Set.__or__
    __sub__ = Set.__sub__
    __xor__ = Set.__xor__

    issubset = __le__
    issuperset = __ge__
    union = __or__
    intersection = __and__
    difference = __sub__
    symmetric_difference = __xor__

    isdisjoint = Set.isdisjoint

Set.register(PSet)
Hashable.register(PSet)

_EMPTY_PSET = PSet(pmap())


def pset(iterable=(), pre_size=8):
    """
    Creates a persistent set from iterable. Optionally takes a sizing parameter equivalent to that
    used for :py:func:`pmap`.

    >>> s1 = pset([1, 2, 3, 2])
    >>> s1
    pset([1, 2, 3])
    """
    if not iterable:
        return _EMPTY_PSET
Esempio n. 18
0
    @abstractmethod
    def delete(self, index, stop=None):
        """
        Delete a portion of the vector by index or range.

        >>> v1 = v(1, 2, 3, 4, 5)
        >>> v1.delete(1)
        pvector([1, 3, 4, 5])
        >>> v1.delete(1, 3)
        pvector([1, 4, 5])
        """

_EMPTY_PVECTOR = PythonPVector(0, SHIFT, [], [])
PVector.register(PythonPVector)
Sequence.register(PVector)
Hashable.register(PVector)

def python_pvector(iterable=()):
    """
    Create a new persistent vector containing the elements in iterable.

    >>> v1 = pvector([1, 2, 3])
    >>> v1
    pvector([1, 2, 3])
    """
    return _EMPTY_PVECTOR.extend(iterable)

try:
    # Use the C extension as underlying trie implementation if it is available
    import os
    if os.environ.get('PYRSISTENT_NO_C_EXTENSION'):
Esempio n. 19
0
    """
    __slots__ = ('first', 'rest')

    def __new__(cls, first, rest):
        instance = super(PList, cls).__new__(cls)
        instance.first = first
        instance.rest = rest
        return instance

    def __bool__(self):
        return True
    __nonzero__ = __bool__


Sequence.register(PList)
Hashable.register(PList)


class _EmptyPList(_PListBase):
    __slots__ = ()

    def __bool__(self):
        return False
    __nonzero__ = __bool__

    @property
    def first(self):
        raise AttributeError("Empty PList has no first")

    @property
    def rest(self):
Esempio n. 20
0
    def delete(self, index, stop=None):
        """
        Delete a portion of the vector by index or range.

        >>> v1 = v(1, 2, 3, 4, 5)
        >>> v1.delete(1)
        pvector([1, 3, 4, 5])
        >>> v1.delete(1, 3)
        pvector([1, 4, 5])
        """


_EMPTY_PVECTOR = PythonPVector(0, SHIFT, [], [])
PVector.register(PythonPVector)
Sequence.register(PVector)
Hashable.register(PVector)


def python_pvector(iterable=()):
    """
    Create a new persistent vector containing the elements in iterable.

    >>> v1 = pvector([1, 2, 3])
    >>> v1
    pvector([1, 2, 3])
    """
    return _EMPTY_PVECTOR.extend(iterable)


try:
    # Use the C extension as underlying trie implementation if it is available