Esempio n. 1
0
def parse_args(struct_engine_mode: namedtuple):
    '''
		@function parse_args
		@date Sun, 10 May 2020 12:21:57 +0530
		@brief function to parse the arguments provided for engine
		@param [IN] struct_engine_mode - namedtuple containing the fields to be
		parsed from the arguments and populated
	'''
    if struct_engine_mode is None:
        raise ValueError(ERR_VALUE.format("Engine mode structure"))

    argsp = ArgumentParser()

    # elements handled in engine_mode_t -> struct_engine_mode
    # gameconf, build_mode

    # optional arguments
    build_mode_info = "Engine mode has to be in debug(1)"
    argsp.add_argument("--build-mode", help=build_mode_info, type=int)

    gameconf_info = "Custom configuration filepath [absolute]"
    argsp.add_argument("--config", help=gameconf_info)

    pr = argsp.parse_args()
    struct_engine_mode.build_mode = True if (pr.build_mode == 1) else False
    struct_engine_mode.gameconf = pr.config
Esempio n. 2
0
def move(row:int, column:int, game_state: namedtuple) -> namedtuple:
    """
    This function will perform the given move the for the current player
    :rtype : othello namedtuple
    :param row: int
    :param column: int
    :param game_state: othello namedtuple
    """
    #print('move {},{} = {}'.format(row, column, game_state.game_board[row - 1][column - 1]))
    if row > len(game_state.game_board) or row < 1:
        raise InvalidMove

    if column > len(game_state.game_board[0]) or column < 1:
        raise InvalidMove

    if not _check_move(row, column, game_state):
        raise InvalidMove

    for number in range(_find_north(row, column, game_state)):
        game_state.game_board[(row - 1) - (number + 1)][(column - 1)] = game_state.current_player

    for number in range(_find_south(row, column, game_state)):
        game_state.game_board[(row - 1) + (number + 1)][(column - 1)] = game_state.current_player

    for number in range(_find_west(row, column, game_state)):
        game_state.game_board[(row - 1)][(column - 1) - (number + 1)] = game_state.current_player

    for number in range(_find_east(row, column, game_state)):
        game_state.game_board[(row - 1)][(column - 1) + (number + 1)] = game_state.current_player

    for number in range(_find_northwest(row, column, game_state)):
        game_state.game_board[(row - 1) - (number + 1)][(column - 1) - (number + 1)] = game_state.current_player

    for number in range(_find_northeast(row, column, game_state)):
        game_state.game_board[(row - 1) - (number + 1)][(column - 1) + (number + 1)] = game_state.current_player

    for number in range(_find_southwest(row, column, game_state)):
        game_state.game_board[(row - 1) + (number + 1)][(column - 1) - (number + 1)] = game_state.current_player

    for number in range(_find_southeast(row, column, game_state)):
        game_state.game_board[(row - 1) + (number + 1)][(column - 1) + (number + 1)] = game_state.current_player

    game_state.game_board[row - 1][column - 1] = game_state.current_player

    game_state = count_disk(game_state)

    game_state = _change_player(game_state)

    if not _check_player(game_state):
        game_state = _change_player(game_state)

        if _check_win(game_state):
            game_state = game_state._replace(win_result=_find_winner(game_state))

            return game_state

    return game_state
Esempio n. 3
0
    def __init__(self, conf: namedtuple):
        self.size = conf.size

        # inhibitory neurons
        isi_size = int((1 - conf.splitSize) * self.size)
        self.neurons = [conf.neuron(conf.isiConfig) for _ in range(isi_size)]

        # exicitory neurons
        self.neurons.extend(
            [conf.neuron(conf.iseConfig) for _ in range(self.size - isi_size)])

        self.α = conf.traceAlpha
        self.activities = []
Esempio n. 4
0
def _change_player(game_state: namedtuple) -> namedtuple:
    """
    This function changes the current player in the game state and returns it.
    :rtype : othello namedtuple
    :param game_state: othello namedtuple
    """
    #print('_change_player)')
    if game_state.current_player == BLACK:
        game_state = game_state._replace(current_player=WHITE)

    else:
        game_state = game_state._replace(current_player=BLACK)

    return game_state
Esempio n. 5
0
    def __init__(self, ipaddr=None, device=None, community='Public',
        retries=3, timeout=9):
        self.device = device
        self.ipaddr = ipaddr
        self.community = community
        self.SNMPObject = NT('SNMPObject', ['modName', 'datetime', 'symName',
            'index', 'value'])
        self.SNMPIndexed = NT('SNMPIndexed', ['modName', 'datetime', 'symName',
            'index', 'value'])
        self.query_timeout = float(timeout)/int(retries)
        self.query_retries = int(retries)
        self._index = None

        self.cmdGen = cmdgen.CommandGenerator()
def _change_player(game_state: namedtuple) -> namedtuple:
    """
    This function changes the current player in the game state and returns it.
    :rtype : othello namedtuple
    :param game_state: othello namedtuple
    """
    #print('_change_player)')
    if game_state.current_player == BLACK:
        game_state = game_state._replace(current_player=WHITE)

    else:
        game_state = game_state._replace(current_player=BLACK)

    return game_state
Esempio n. 7
0
def set_variable(var: namedtuple) -> namedtuple:
    """Sets the variable from the user input

    Args:
        var (namedtuple): namedtuple("Variable", ["name", "string", "content"])

    Returns:
        namedtuple: namedtuple with input set correcly.
    """
    return var._replace(content=input(f"Set variable {var.name}: "))
Esempio n. 8
0
def FillNC(root_grp_ptr, scene_location):
    retGps = NT("returnGroups",  "calGrp, productsGrp, navGrp, slaGrp, periodGrp")
    root_grp_ptr.createDimension('samples', 512)
    root_grp_ptr.createDimension('scan_lines', 2000)
    root_grp_ptr.createDimension('bands', 128)
    root_grp_ptr.instrument = 'HICO'
    root_grp_ptr.institution = 'NASA Goddard Space Flight Center'
    root_grp_ptr.resolution = '100m'
    root_grp_ptr.location_description = scene_location
    root_grp_ptr.license = 'http://science.nasa.gov/earth-science/earth-science-data/data-information-policy/'
    root_grp_ptr.naming_authority = 'gov.nasa.gsfc.sci.oceandata'
    root_grp_ptr.date_created = DT.strftime(DT.utcnow(), '%Y-%m-%dT%H:%M:%SZ')
    root_grp_ptr.creator_name = 'NASA/GSFC'
    root_grp_ptr.creator_email = '*****@*****.**'
    root_grp_ptr.publisher_name = 'NASA/GSFC'
    root_grp_ptr.publisher_url = 'http_oceancolor.gsfc.nasa.gov'
    root_grp_ptr.publisher_email = '*****@*****.**'
    root_grp_ptr.processing_level = 'L1B'
    nav_grp = root_grp_ptr.createGroup('navigation')
    nav_vars = list()
    nav_vars.append(nav_grp.createVariable('sensor_zenith', 'f4', ('scan_lines', 'samples',)))
    nav_vars.append(nav_grp.createVariable('solar_zenith', 'f4', ('scan_lines', 'samples',)))
    nav_vars.append(nav_grp.createVariable('sensor_azimuth', 'f4', ('scan_lines', 'samples',)))
    nav_vars.append(nav_grp.createVariable('solar_azimuth', 'f4', ('scan_lines', 'samples',)))
    nav_vars.append(nav_grp.createVariable('longitudes', 'f4', ('scan_lines', 'samples',)))
    nav_vars.append(nav_grp.createVariable('latitudes', 'f4', ('scan_lines', 'samples',)))
    for var in nav_vars:
        var.units = 'degrees'
        var.valid_min = -180
        var.valid_max = 180
        var.long_name = var.name.replace('_', ' ').rstrip('s')
    retGps.navGrp = nav_grp
    retGps.productsGrp = root_grp_ptr.createGroup('products')
    lt = retGps.productsGrp.createVariable('Lt', 'u2', ('scan_lines',
                                                        'samples', 'bands'))
    lt.scale_factor = float32([0.02])
    lt.add_offset = float32(0)
    lt.units = "W/m^2/micrometer/sr"
    # lt.valid_range = nparray([0, 16384], dtype='u2')
    lt.long_name = "HICO Top of Atmosphere"
    lt.wavelength_units = "nanometers"
    # lt.createVariable('fwhm', 'f4', ('bands',))
    lt.fwhm = npones((128,), dtype='f4') * -1
    # wv = lt.createVariable('wavelengths', 'f4', ('bands',))
    lt.wavelengths = npones((128,), dtype='f4')
    lt.wavelength_units = "nanometers"
    retGps.slaGrp = root_grp_ptr.createGroup('scan_line_attributes')
    retGps.slaGrp.createVariable('scan_quality_flags', 'u1', ('scan_lines',
                                                              'samples'))
    # Create metadata group and sub-groups
    meta_grp = root_grp_ptr.createGroup('metadata')
    pl_info_grp = meta_grp.createGroup("FGDC/Identification_Information/Platform_and_Instrument_Identification")
    pl_info_grp.Instrument_Short_Name = "hico"
    prc_lvl_grp = meta_grp.createGroup("FGDC/Identification_Information/Processing_Level")
    prc_lvl_grp.Processing_Level_Identifier = "Level-1B"
    retGps.periodGrp = meta_grp.createGroup("FGDC/Identification_Information/Time_Period_of_Content")
    # fill HICO group
    retGps.calGrp = meta_grp.createGroup("HICO/Calibration")
    return retGps
Esempio n. 9
0
def create_dict_named(obj: namedtuple) -> dict:
    """ Create a dict out of a namedtuple.

    Args:
        obj: Namedtuple.

    Returns:
        A dict containing the data.
    """
    data = {
        '__type__': type(obj).__name__,
        '__data__': create_dict(obj._asdict())
    }
    return data
Esempio n. 10
0
def genotype_to_dict(genotype: namedtuple):
    """Converts the given genotype to a dictionary that can be serialized.
    Inverse operation to dict_to_genotype().

    Args:
        genotype (namedtuple): The genotype that should be converted.

    Returns:
        dict: The converted genotype.
    """
    genotype_dict = genotype._asdict()
    for key, val in genotype_dict.items():
        if type(val) == range:
            genotype_dict[key] = [node for node in val]
    return genotype_dict
Esempio n. 11
0
def prepare_log(log: namedtuple):
    try:
        LogModel = log_model_map[log.__class__.__name__]
    except KeyError:
        raise
    sensitive_fields = sorted(LogModel.sensitive_fields())
    log_dic_python = log._asdict()
    log_dic_python['hmac1'] = encrypt_log(log_dic_python, sensitive_fields)
    table = LogModel._meta.table_name

    log_dic_db = {
        field.column_name: field.db_value(value)
        for field, value in LogModel._normalize_data(None, log_dic_python).items()
    }
    fields = log._fields
    return log_dic_db, table, fields
def results_to_csv(config: namedtuple, val_metrics: dict, attn_metrics: dict, output_csv=None):
    keys = set(val_metrics.keys()) | set(attn_metrics.keys())
    keys.add('epoch')

    overlapping_keys = val_metrics.keys() & attn_metrics.keys()
    if len(overlapping_keys) > 0:
        raise ValueError("Found overlapping keys {} in training and attention metrics".format(overlapping_keys))

    def find_keys_with_epoch(metrics_dict: dict) -> set:
        return set(list(filter(lambda x: type(metrics_dict[x]) is list, metrics_dict.keys())))
    val_keys_with_epoch = find_keys_with_epoch(val_metrics)
    val_keys_without_epoch = val_metrics.keys() - val_keys_with_epoch
    attn_keys_with_epoch = find_keys_with_epoch(attn_metrics)
    attn_metrics_without_epoch = attn_metrics.keys() - attn_keys_with_epoch

    keys_without_epochs = (val_metrics.keys() - val_keys_with_epoch) | (attn_metrics.keys() - attn_keys_with_epoch)

    model_parameters = dict(config._asdict())
    df = pd.DataFrame(columns=(list(model_parameters.keys()) + list(keys)))

    def add_all_keys_with_epoch(df_, keys_with_epoch, undef_keys, metrics):
        (max_epoch,) = set(len(metrics[x]) for x in keys_with_epoch)
        for epoch in range(max_epoch):
            update_dict_ = dict(model_parameters)
            update_dict_['epoch'] = epoch
            for k in keys_with_epoch:
                update_dict_[k] = metrics[k][epoch]
            for k in undef_keys:
                update_dict_[k] = ""
            df_ = df_.append(update_dict_, ignore_index=True)
        return df_

    df = add_all_keys_with_epoch(df, val_keys_with_epoch, keys_without_epochs | attn_keys_with_epoch, val_metrics)
    df = add_all_keys_with_epoch(df, attn_keys_with_epoch, keys_without_epochs | val_keys_with_epoch, attn_metrics)
    update_dict = dict(model_parameters)
    for k in attn_metrics_without_epoch:
        update_dict[k] = attn_metrics[k]
    for k in val_keys_without_epoch:
        update_dict[k] = val_metrics[k]
    for k in val_keys_with_epoch | attn_keys_with_epoch:
        update_dict[k] = ""
    update_dict['epoch'] = ""
    df = df.append(update_dict, ignore_index=True)
    if output_csv:
        os.makedirs(os.path.dirname(output_csv), exist_ok=True)
        df.to_csv(output_csv, index=False, compression=None)
    return df
Esempio n. 13
0
def namedtuple_to_xml(item: namedtuple):
    elem = Element(type(item).__name__)
    asdict = item._asdict().items()
    for key, val in asdict:
        if val is None:
            continue

        if type(val) is namedtuple:
            child = namedtuple_to_xml(val)
        elif type(val) is list:
            child = Element(key)
            for item in val:
                child.append(namedtuple_to_xml(item))
        else:
            child = Element(key)
            child.text = str(val)
        elem.append(child)

    return elem
Esempio n. 14
0
def search_variable(var: namedtuple, vars: List[namedtuple], i: int,
                    session: sessionmaker):
    while True:
        show_variable(None)
        print("Enter variable name:")
        inp = input()
        if inp == "exit":
            break
        db_var = session.query(Variable).filter(Variable.name == inp).first()
        if db_var:
            print()
            print(f"Set {var.name} to {db_var.content}")
            vars[i] = var._replace(content=db_var.content)
            break
        else:
            print()
            print("Variable name not found")
            print("Enter new name or enter exit to leave")
        print()
    return vars
Esempio n. 15
0
def count_disk(game_state: namedtuple) -> namedtuple:
    """
    This function counts the disks on the game board and updates the game state and returns it.
    :rtype : othello namedtuple
    :param game_state: othello namedtuple
    """
    #print('_count_disk')
    black_count = 0
    white_count = 0

    for row in game_state.game_board:
        for cell in row:
            if cell == BLACK:
                black_count += 1

            if cell == WHITE:
                white_count += 1

    game_state = game_state._replace(black_score=black_count)
    game_state = game_state._replace(white_score=white_count)

    return game_state
def count_disk(game_state: namedtuple) -> namedtuple:
    """
    This function counts the disks on the game board and updates the game state and returns it.
    :rtype : othello namedtuple
    :param game_state: othello namedtuple
    """
    #print('_count_disk')
    black_count = 0
    white_count = 0

    for row in game_state.game_board:
        for cell in row:
            if cell == BLACK:
                black_count += 1

            if cell == WHITE:
                white_count += 1

    game_state = game_state._replace(black_score=black_count)
    game_state = game_state._replace(white_score=white_count)

    return game_state
Esempio n. 17
0
 def _get_by_entity(self, entity: namedtuple) -> namedtuple:
     if self.n >= 5:
         self.stop()
         self.start()
     self.n += 1
     # noinspection PyProtectedMember
     result = entity._asdict()
     self.browser.get(entity.url)
     table = self.browser.find_element_by_xpath("//div[@class='portlet']//table[@align='center'][2]")
     if table:
         result["content"] = table.text
         if '不开展' not in table.text:
             span_tag = table.find_elements_by_xpath("//table[@border>'0']//tr[1]//td")
             data_tag = table.find_elements_by_xpath("//table[@border>'0']//tr[2]//td")
             span = [tag.text for tag in span_tag]
             data = [tag.text for tag in data_tag]
             try:
                 result["days"] = data[["期限" in w for w in span].index(True)]
                 result["amount"] = data[["量" in w for w in span].index(True)]
                 result["rate"] = data[["利率" in w for w in span].index(True)]
             except ValueError:
                 pass
     return self.entity(**result)
Esempio n. 18
0
 def save_link(self, link: namedtuple) -> None:
     # noinspection PyProtectedMember
     self.update("link", {
         "head": link.head,
         "tail": link.tail
     }, link._asdict(), True)
Esempio n. 19
0
class v2c(object):
    """Build an SNMPv2c manager object"""
    def __init__(self, ipaddr=None, device=None, community='Public',
        retries=3, timeout=9):
        self.device = device
        self.ipaddr = ipaddr
        self.community = community
        self.SNMPObject = NT('SNMPObject', ['modName', 'datetime', 'symName',
            'index', 'value'])
        self.SNMPIndexed = NT('SNMPIndexed', ['modName', 'datetime', 'symName',
            'index', 'value'])
        self.query_timeout = float(timeout)/int(retries)
        self.query_retries = int(retries)
        self._index = None

        self.cmdGen = cmdgen.CommandGenerator()
        #mibBuilder = builder.MibBuilder()
        #mibPath = mibBuilder.getMibPath()+('/opt/python/Models/Network/MIBs',)
        #mibBuilder.setMibPath(*mibPath)
        #mibBuilder.loadModules(
        #    'RFC-1213',
        #    )
        #mibView = view.MibViewController(mibBuilder)

    def index(self, oid=None):
        """Build an SNMP Manager index to reference in get or walk operations.  First v2c.index('ifName').  Then, v2c.get_index('ifHCInOctets', 'eth0') or v2c.walk_index('ifHCInOctets').  Instead of referencing a numerical index, the index will refer to the value that was indexed."""
        self._index = dict()
        self._intfobj = dict()
        snmpidx = self.walk(oid=oid)
        for ii in snmpidx:
            ## the dicts below are keyed by the SNMP index number
            # value below is the text string of the intf name
            self._index[ii.index] = ii.value
            # value below is the intf object
            if not (self.device is None):
                self._intfobj[ii.index] = self.device.find_match_intf(ii.value,
                    enforce_format=False)

    def walk_index(self, oid=None):
        """Example usage, first index with v2c.index('ifName'), then v2c.get_index('ifHCInOctets', 'eth0')"""
        if not (self._index is None):
            tmp = list()
            snmpvals = self.walk(oid=oid)
            for idx, ii in enumerate(snmpvals):
                tmp.append([ii.modName, datetime.now(), ii.symName,
                    self._index[ii.index], ii.value])

            return map(self.SNMPIndexed._make, tmp)
        else:
            raise ValueError, "Must populate with SNMP.v2c.index() first"

    def walk(self, oid=None):
        if isinstance(self._format(oid), tuple):
            errorIndication, errorStatus, errorIndex, \
            varBindTable = self.cmdGen.nextCmd(
                        cmdgen.CommunityData('test-agent', self.community),
                        cmdgen.UdpTransportTarget((self.ipaddr, 161),
                        retries=self.query_retries,
                        timeout=self.query_timeout),
                        self._format(oid),
                    )
            # Parsing only for now... no return value...
            self._parse(errorIndication, errorStatus, errorIndex, varBindTable)
        elif isinstance(oid, str):
            errorIndication, errorStatus, errorIndex, \
                             varBindTable = self.cmdGen.nextCmd(
                # SNMP v2
                cmdgen.CommunityData('test-agent', self.community),
                # Transport
                cmdgen.UdpTransportTarget((self.ipaddr, 161)),
                (('', oid),),
                #cmdgen.MibVariable(oid).loadMibs(),
                )
            return self._parse_resolve(errorIndication, errorStatus,
                errorIndex, varBindTable)
        else:
            raise ValueError, "Unknown oid format: %s" % oid

    def get_index(self, oid=None, index=None):
        """In this case, index should be similar to the values you indexed from... i.e. if you index with ifName, get_index('ifHCInOctets', 'eth0')"""
        if not (self._index is None) and isinstance(index, str):
            # Map the interface name provided in index to an ifName index...
            snmpvals = None
            for idx, value in self._index.items():
                if index == value:
                    # if there is an exact match between the text index and the
                    # snmp index value...
                    snmpvals = self.get(oid=oid, index=idx)
                    break
            else:
                # TRY mapping the provided text index into an interface obj
                _intfobj = self.device.find_match_intf(index)
                if not (_intfobj is None):
                    for key, val in self._intfobj.items():
                        if (val==_intfobj):
                            snmpvals = self.get(oid=oid, index=key)
                            break

            # Ensure we only parse a valid response...
            if not (snmpvals is None):
                tmp = [snmpvals.modName, datetime.now(), snmpvals.symName,
                    self._index[snmpvals.index], snmpvals.value]
                return self.SNMPIndexed._make(tmp)

        elif not isinstance(index, str):
            raise ValueError, "index must be a string value"
        else:
            raise ValueError, "Must populate with SNMP.v2c.index() first"

    def get(self, oid=None, index=None):
        if isinstance(self._format(oid), tuple):
            errorIndication, errorStatus, errorIndex, \
            varBindTable = self.cmdGen.getCmd(
                        cmdgen.CommunityData('test-agent', self.community),
                        cmdgen.UdpTransportTarget((self.ipaddr, 161),
                        retries=self.query_retries,
                        timeout=self.query_timeout),
                        self._format(oid),
                    )
            # Parsing only for now... no return value...
            self._parse(errorIndication, errorStatus, errorIndex, varBindTable)
        elif isinstance(oid, str) and isinstance(index, int):
            errorIndication, errorStatus, errorIndex, \
                             varBindTable = self.cmdGen.getCmd(
                # SNMP v2
                cmdgen.CommunityData('test-agent', self.community),
                # Transport
                cmdgen.UdpTransportTarget((self.ipaddr, 161)),
                (('', oid), index),
                #cmdgen.MibVariable(oid).loadMibs(),
                )
            return self._parse_resolve(errorIndication, errorStatus,
                errorIndex, [varBindTable])[0]
        else:
            raise ValueError, "Unknown oid format: %s" % oid

    def bulkwalk(self, oid=None):
        """SNMP bulkwalk a device.  NOTE: This often is faster, but does not work as well as a simple SNMP walk"""
        if isinstance(self._format(oid), tuple):
            errorIndication, errorStatus, errorIndex, varBindTable = self.cmdGen.bulkCmd(
                        cmdgen.CommunityData('test-agent', self.community),
                        cmdgen.UdpTransportTarget((self.ipaddr, 161),
                        retries=self.query_retries,
                        timeout=self.query_timeout),
                0,
                25,
                self._format(oid),
                )
            return self._parse(errorIndication, errorStatus,
                errorIndex, varBindTable)
        elif isinstance(oid, str):
            errorIndication, errorStatus, errorIndex, varBindTable = self.cmdGen.bulkCmd(
                        cmdgen.CommunityData('test-agent', self.community),
                        cmdgen.UdpTransportTarget((self.ipaddr, 161),
                        retries=self.query_retries,
                        timeout=self.query_timeout),
                0,
                25,
                (('', oid),),
                #cmdgen.MibVariable(oid).loadMibs(),
                )
            return self._parse_resolve(errorIndication, errorStatus,
                errorIndex, varBindTable)
        else:
            raise ValueError, "Unknown oid format: %s" % oid

    def _parse_resolve(self, errorIndication=None, errorStatus=None,
        errorIndex=None, varBindTable=None):
        """Parse MIB walks and resolve into MIB names"""
        retval = list()
        if errorIndication:
            print errorIndication
        else:
            if errorStatus:
                print '%s at %s\n' % (
                    errorStatus.prettyPrint(),
                    varBindTable[-1][int(errorIndex)-1]
                    )
            else:
                for varBindTableRow in varBindTable:
                    for oid, val in varBindTableRow:
                        (symName, modName), indices = cmdgen.mibvar.oidToMibName(
                            self.cmdGen.mibViewController, oid
                            )
                        val = cmdgen.mibvar.cloneFromMibValue(
                            self.cmdGen.mibViewController, modName, symName,
                            val)
                        # Try to parse the index as an int first,
                        # then as a string
                        try:
                            index = int(string.join(map(lambda v: v.prettyPrint(), indices), '.'))
                        except ValueError:
                            index = str(string.join(map(lambda v: v.prettyPrint(), indices), '.'))

                        # Re-format values as float or integer, if possible...
                        tmp = val.prettyPrint()
                        if re.search(r"""^\s*\d+\s*$""", tmp):
                            value = int64(tmp)
                        elif re.search(r"""^\s*\d+\.\d+\s*$""", tmp):
                            value = float64(tmp)
                        else:
                            value = tmp

                        retval.append(self.SNMPObject._make([modName,
                            datetime.now(), symName, index, value]))
            return retval

    def _parse(self, errorIndication, errorStatus, errorIndex,
        varBindTable):
        if errorIndication:
           print errorIndication
        else:
            if errorStatus:
                print '%s at %s\n' % (
                    errorStatus.prettyPrint(),
                    errorIndex and varBindTable[-1][int(errorIndex)-1] or '?'
                    )
            else:
                for varBindTableRow in varBindTable:
                    for name, val in varBindTableRow:
                        print '%s = %s' % (name.prettyPrint(), val.prettyPrint())

    def _format(self, oid):
        """Format a numerical OID in the form of 1.3.4.1.2.1 into a tuple"""
        if isinstance(oid, str):
            if re.search('(\d+\.)+\d+', oid):
                tmp = list()
                for ii in oid.split('.'):
                    tmp.append(int(ii))
                return tuple(tmp)
        else:
            return oid
Esempio n. 20
0
def __reader(struct_definition: Struct, output_tuple: namedtuple,
             data) -> namedtuple:
    """Helper function for building out struct reader functions"""
    return output_tuple._make(struct_definition.unpack(data))
Esempio n. 21
0
 def data(self, cls: namedtuple):
     self._data = cls
     for name, value in cls._asdict().items():
         self.__setattr__(name, value)
Esempio n. 22
0
def avg_profit(company: namedtuple) -> namedtuple:
    summ = company.quarter_profit_1 + company.quarter_profit_2 + company.quarter_profit_3 + company.quarter_profit_4
    company = company._replace(avg=summ / 10)
    return company
Esempio n. 23
0
    def _compute_meaning_atom(self, atom: namedtuple, debug=False):
        ''' Computes the meaning of an atom for all models.

        The meaning of integer constants are model invariant:
        its meaning is the same in each model: namely, that integer 
        itself. The meaning of set variables are model dependent: it
        provides, given an enumeration of model, the information of,  
        given a model in that enumeration, which elements of that 
        model are present in that set.

        Args:
            atom: A namedtuple created by "Atom". Either set variable
                A or B, or an integer constant from 0 to 
                max_model_size.

        Returns: 
            For integer constants: an immutable np.array of shape 
            (1,N_OF_MODELS), for set variables: a list of 
            self.max_model_size many immutable np.arrays of shape 
            (model_size, number_of_subsets**model_size) for model_size 
            from 1 to max_model_size.

        '''
        # Model-invariant atom case: integer constants.
        # An array with that same integer for each model in the
        # universe.
        if atom.is_constant:
            atom_meaning = np.array([atom.func()] * self.N_OF_MODELS)
            atom_meaning.flags.writeable = False
        # Model-dependent atom case: set variables.
        # A set representation shows which elements are in a set
        # accross the whole universe of models.
        else:
            atom_meaning = []
            cur_model_size = 1
            # Make matrix template of the correct shape.
            # Columns represent models, rows represent objects.
            # Entry (i,j) represents whether element i in model j
            # is in A (1) or not in A (0).
            # For model_size 0 to max_model_size there will be a matrix
            # of shape (model_size, number_of_subsets ** model_size)
            # in set_repr.
            number_of_models_of_cur_model_size = (
                self.number_of_subsets**cur_model_size)
            set_repr = np.zeros(
                (cur_model_size, number_of_models_of_cur_model_size),
                dtype=np.uint8)
            # Offset = number of models of previous model sizes.
            offset = 0
            # Fil in the matrix template, per model.
            start_of_new_model_block = (self.number_of_subsets**cur_model_size)
            for model_idx, model in enumerate(self.generate_universe()):
                # When all models of cur_model_size have been treated,
                # go to the next block of models: the models of size
                # cur_model_size + 1. Store the results of current
                # block of models.
                if debug:
                    print()
                    print("start_of_new_model_block = ", end="")
                    print(start_of_new_model_block)
                    print("model_idx, offset, model = ", end="")
                    print(model_idx, offset, utils.tuple_format(model))
                if model_idx == start_of_new_model_block:
                    if debug:
                        print()
                        print()
                    cur_model_size += 1
                    offset = start_of_new_model_block
                    start_of_new_model_block += (
                        self.number_of_subsets**cur_model_size)
                    set_repr.flags.writeable = False
                    atom_meaning.append(set_repr)
                    # Reset matrix template: make new matrix template
                    # of the correct shape.
                    set_repr = np.zeros(
                        (cur_model_size, self.number_of_subsets**
                         cur_model_size),
                        dtype=np.uint8,
                    )
                # For object 1 to object current_model_size in the
                # current model, fill in set-inclusion for this
                # set-variable. Fill in collumn i = model_index - offset
                # (the i"th model of current_model_size).
                if debug:
                    print("model =", model)
                    print("atom.func(model) =", atom, atom.func(model))
                    print("set_repr =", set_repr)
                set_repr[:, model_idx - offset] = atom.func(model)
                if debug:
                    print("set_repr =", set_repr)
            # Finish.
            set_repr.flags.writeable = False
            atom_meaning.append(set_repr)
        return atom_meaning
Esempio n. 24
0
def unpack_named(data: bytes, packing: str, nt: namedtuple):
    return [nt._make(x) for x in struct.iter_unpack(packing, data)]
Esempio n. 25
0
def nt2json(nt: namedtuple):
    return json.dumps(nt._asdict(), default=str)
Esempio n. 26
0
 def __init__(self, Prime=0, RunID=0):
     TH.Thread.__init__(self)
     PrimeBase.THL.acquire()
     if True:
         self._PR = Prime  # current prrime
         self._ID = RunID  # 0 : dispatcher ---  1..p : worker threads
         # print('init thread: ', Prime, RunID, flush=True)
         #
         tn = self._MakeName(Prime, RunID)
         self.setName(tn)
         # easy identifier over all threads
         #
         nt = NT('Info', [
             'Prime', 'RunID', 'TObject', 'Alive', 'I_AmReady', 'PauseCnt',
             'WhereItIs', 'InitTime', 'StartTime', 'ReadyTime', 'FinitTime'
         ])
         nt.Prime = Prime  # current prrime
         nt.RunID = RunID  # 0 : dispatcher ---  1..p : worker threads
         nt.TObject = self
         nt.alive = self.is_alive()
         nt.I_AmReady = False
         nt.InitTime = DT.datetime.now()
         nt.StartTime = None
         nt.ReadyTime = None
         nt.FinitTime = None
         nt.PauseCnt = 0  # counter for thread sleep phases
         nt.WhereItIs = 0
         #
         self.AllThreads.setdefault(tn, nt)
     PrimeBase.THL.release()
def parse_namedtuple(losses: namedtuple, prefix: str):
  log = {'{}/{}'.format(prefix, k): v for k, v in losses._asdict().items()}
  return log
Esempio n. 28
0
 def save_node(self, node: namedtuple) -> None:
     # noinspection PyProtectedMember
     self.update("node", {
         "name": node.name,
         "source": node.source
     }, node._asdict(), True)
Esempio n. 29
0
def message_from_tuple(payload_tuple: namedtuple, attributes: dict = None):
    tuple_as_json = json.dumps(payload_tuple._asdict())
    return mock_message(tuple_as_json, attributes)
def _prefixed(nt: namedtuple, prefix):
    """Convert a named tuple into a dict with prefixed names."""
    result = {}
    for key, value in nt._asdict().items():
        result[prefix + key] = value
    return result
Esempio n. 31
0
def train_DQN(env: WrapIt, Q: DQN, Q_target: DQN, optimizer: namedtuple,
              replay_buffer: ReplayBuffer, exploration: Schedule):
    """
    @parameters
        Q:
        Q_target:
        optimizer: torch.nn.optim.Optimizer with parameters
        buffer: store the frame
    @return
        None
    """
    assert type(env.observation_space) == gym.spaces.Box
    assert type(env.action_space) == gym.spaces.Discrete

    optimizer = optimizer.constructor(Q.parameters(), **optimizer.kwargs)

    num_actions = env.action_space.n
    num_param_updates = 0
    mean_episode_reward = -float('nan')
    best_mean_episode_reward = -float('inf')
    LOG_EVERY_N_STEPS = 10000
    last_obs = env.reset(passit=True)

    # Q.getSummary()

    out_count = 0
    bar = tqdm(range(ARGS.timesteps))
    for t in bar:
        last_idx = replay_buffer.store_frame(last_obs)
        recent_observations = replay_buffer.encode_recent_observation()
        if t > ARGS.startepoch:
            value = select_epsilon_greedy_action(Q, recent_observations,
                                                 exploration, t, num_actions)
            action = value[0, 0]
        else:
            action = random.randrange(num_actions)
        obs, reward, done, _ = env.step(action)
        reward = max(-1.0, min(reward, 1.0))
        replay_buffer.store_effect(last_idx, action, reward, done)

        if done:
            obs = env.reset()
        last_obs = obs
        # bar.set_description(f"{obs.shape} {obs.dtype}")

        if (t > ARGS.startepoch and t % ARGS.dqn_freq == 0
                and replay_buffer.can_sample(ARGS.batchsize)):
            bar.set_description("backward")
            (obs_batch, act_batch, rew_batch, next_obs_batch,
             done_mask) = replay_buffer.sample(ARGS.batchsize)
            (obs_batch, act_batch, rew_batch, next_obs_batch,
             not_done_mask) = TENSOR(obs_batch, act_batch, rew_batch,
                                     next_obs_batch, 1 - done_mask)
            (obs_batch, act_batch, rew_batch, next_obs_batch,
             not_done_mask) = TO(obs_batch, act_batch, rew_batch,
                                 next_obs_batch, not_done_mask)

            values = Q(obs_batch)
            current_Q_values = values.gather(
                1,
                act_batch.unsqueeze(1).long()).squeeze()
            # Compute next Q value based on which action gives max Q values
            # Detach variable from the current graph since we don't want gradients for next Q to propagated
            next_max_q = Q_target(next_obs_batch).detach().max(1)[0]
            next_Q_values = not_done_mask * next_max_q
            # Compute the target of the current Q values
            Q_target_values = rew_batch + (ARGS.gamma * next_Q_values)
            # Compute Bellman error
            bellman_error = Q_target_values - current_Q_values
            # clip the bellman error between [-1 , 1]
            clipped_bellman_error = bellman_error.clamp(-1, 1)
            # Note: clipped_bellman_delta * -1 will be right gradient
            d_error = clipped_bellman_error * -1.0
            # Clear previous gradients before backward pass
            optimizer.zero_grad()
            # run backward pass
            # current_Q_values.backward(d_error.data.unsqueeze(1))
            current_Q_values.backward(d_error.data)

            # Perfom the update
            optimizer.step()
            num_param_updates += 1

            if num_param_updates % ARGS.dqn_updatefreq == 0:
                bar.set_description("update")
                Q_target.load_state_dict(Q.state_dict())
Esempio n. 32
0
 def _asSortedList(scores: namedtuple, places: int = 4) -> List[str]:
     """Converts namedtuple of scores to a list of rounded values in name-
     sorted order"""
     tf = truncatedFloat(places)
     return [tf % v for _, v in sorted(scores._asdict().items())]