Esempio n. 1
0
from matplotlib import pyplot as plt
from colloids import track


def draw_circles(xs, ys, rs, **kwargs):
    for x, y, r in zip(xs, ys, rs):
        circle = plt.Circle((x, y), radius=r, **kwargs)
        plt.gca().add_patch(circle)


im = plt.imread('droplets.jpg')
finder = track.MultiscaleBlobFinder(im.shape, Octave0=False, nbOctaves=4)
centers = finder(im, k=2)
draw_circles(centers[:, 0], centers[:, 1], centers[:, 2], facecolor='none', edgecolor='g')
plt.imshow(im, 'hot')
plt.show()
Esempio n. 2
0
        pattern = filename
        path, name = split(filename)
        outpattern = join(path,'treated_'+name)
        divpattern = splitext(join(path,'bgdiv_'+name))[0]+'.jpg'
        filename = pattern%0

    #read the first image
    im = imread(filename)
    if im.ndim ==0:
        im = readTIFF16(filename)
    cent = np.zeros_like(im)
    if len(sys.argv) >2:
        sigma = float(sys.argv[2])
    else:
        #estimate the best blurring radius
        finder = track.MultiscaleBlobFinder(im.shape, nbOctaves=100)
        centers = finder(im, k=1.6, Octave0=False, removeOverlap=False)
        sigma = 1.6*2**(np.argmax([
            oc.binary[1:-1].sum(-1).sum(-1) 
            for oc in finder.octaves[1:]
            ])/3.0)
    #create a monoscale Crocker & Grier finder
    finder = track.CrockerGrierFinder(im.shape)
    #background
    background = track.gaussian_filter(np.array(im, float), 10*sigma)
    background[background==0] = 1.0
    #drift or flow
    overlap = 2**int(np.log(20*sigma)/np.log(2))
    window_size = 2*overlap
    #having 3 subwindows is not enought
    use_subgrid_phasecor = 5*overlap < min(im.shape)
Esempio n. 3
0
import numpy as np


def draw_circles(centres, z_chosen, **kwargs):
    for (x, y, z, r) in centres[:, :4]:
        dz = np.abs(z - z_chosen)
        if dz < r:
            r_real = np.sqrt(r**2 - dz**2)
            circle = plt.Circle((x, y), radius=r_real, **kwargs)
            plt.gca().add_patch(circle)


im = np.load('hard_sphere_volume.npy')
im = np.moveaxis(im, -1, 0)
finder = track.MultiscaleBlobFinder(im.shape,
                                    Octave0=False,
                                    nbOctaves=10,
                                    nbLayers=5)

centers = finder(im, k=1.7)
print(centers.shape)
im = np.moveaxis(im, 0, -1)

z = 30

draw_circles(centers, z, facecolor='none', edgecolor='teal', lw=4)
plt.imshow(im[:, :, z], 'hot')
plt.show()

s = track.radius2sigma(centers[:, -2], dim=2)
bonds, dists = get_bonds(positions=centers[:, :-2],
                         radii=centers[:, -2],