Esempio n. 1
0
    def test_XYZ_to_plotting_colourspace(self):
        """
        Tests :func:`colour.plotting.common.XYZ_to_plotting_colourspace`
        definition.
        """

        XYZ = np.random.random(3)
        np.testing.assert_almost_equal(
            XYZ_to_sRGB(XYZ), XYZ_to_plotting_colourspace(XYZ), decimal=7)
Esempio n. 2
0
    def CCT_D_uv_to_plotting_colourspace(CCT_D_uv):
        """
        Convert given *uv* chromaticity coordinates to the default plotting
        colourspace.
        """

        return normalise_maximum(
            XYZ_to_plotting_colourspace(
                xy_to_XYZ(UCS_uv_to_xy(CCT_to_uv(CCT_D_uv,
                                                 "Robertson 1968")))),
            axis=-1,
        )
def add_rainbow(axis, wavelengths, values, opacity=100):
    # sanity check:
    if not hasattr(axis, 'plot') and not hasattr(axis, 'add_patch'):
        raise Exception("ERROR:\tFirst argument needs to have method \"plot\".")

    from colour.plotting import XYZ_to_plotting_colourspace, filter_cmfs, CONSTANTS_COLOUR_STYLE
    from colour.colorimetry import CCS_ILLUMINANTS, wavelength_to_XYZ
    from colour.utilities import first_item, normalise_maximum
    from matplotlib.patches import Polygon

    col_map_f = "CIE 1931 2 Degree Standard Observer"

    cmfs = first_item(filter_cmfs(col_map_f).values())
    wlen_cmfs = [n for n in wavelengths if n > cmfs.shape.start and n < cmfs.shape.end]

    clr = XYZ_to_plotting_colourspace(
        wavelength_to_XYZ(wlen_cmfs, cmfs),
        CCS_ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_cctf_encoding=False)

    clr = normalise_maximum(clr)
    clr = CONSTANTS_COLOUR_STYLE.colour.colourspace.cctf_encoding(clr)

    polygon = Polygon(
        np.vstack([
            [min(wavelengths), 0],
            np.array([wavelengths, values]).T.tolist(),
            [max(wavelengths), 0],
        ]),
        facecolor='none',
        edgecolor='none')
    axis.add_patch(polygon)

    if opacity < 100:
        padding = 0
    else:
        padding = 0.1

    for dom, col in [(wavelengths - padding, 'black'), (wlen_cmfs, clr)]:
        axis.bar(
            x=dom,
            height=max(values),
            width=1 + padding,
            color=col,
            align='edge',
            alpha=opacity/100,
            clip_path=polygon
        )

    pass
Esempio n. 4
0
def plot_simple_rainbow(ax=None,
                        wavelength=None,
                        flux=None,
                        cmfs="CIE 1931 2 Degree Standard Observer",
                        **kwargs):
    """
    Plot a simple horizontal rainbow,
    based off colour's plot_single_sd.

    Parameters
    ----------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow should be drawn.
    cmfs : string
        The color matching function(s?) to use.

    Returns
    -------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow was drawn.
    """

    if ax is None:
        ax = plt.gca()

    # pull out the CMFss
    cmfs = first_item(filter_cmfs(cmfs).values())

    if wavelength is None:
        # create a grid of wavelengths (at which CMFss are useful)
        wavelength = cmfs.wavelengths

    ok = (wavelength >= np.min(cmfs.wavelengths)) & (wavelength <= np.max(
        cmfs.wavelengths))

    # create colors at theose wavelengths
    colours = XYZ_to_plotting_colourspace(
        wavelength_to_XYZ(wavelength[ok], cmfs),
        CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"]["E"],
    )

    # normalize the colors to their maximum?
    colours = CONSTANTS_COLOUR_STYLE.colour.colourspace.cctf_encoding(
        normalise_maximum(colours))

    # create y values that will be plotted (these could be spectrum)
    if flux is None:
        flux = np.ones_like(wavelength)
    x_min, x_max = min(wavelength), max(wavelength)
    y_min, y_max = 0, max(flux) + max(flux) * 0.05

    # create a polygon to define the top of the bars?
    polygon = Polygon(
        np.vstack([
            (x_min, 0),
            tstack([wavelength[ok], flux[ok]]),
            (x_max, 0),
        ]),
        facecolor="none",
        edgecolor="none",
    )
    ax.add_patch(polygon)

    # draw bars, with the colors at each vertical stripe
    padding = 0.2
    ax.bar(
        x=wavelength[ok] - padding / 2,
        height=max(flux[ok]),
        width=1 + padding,
        color=colours,
        align="edge",
    )

    return ax
Esempio n. 5
0
def plot_sds_in_chromaticity_diagram(
        sds,
        cmfs='CIE 1931 2 Degree Standard Observer',
        chromaticity_diagram_callable=plot_chromaticity_diagram,
        method='CIE 1931',
        annotate_kwargs=None,
        plot_kwargs=None,
        **kwargs):
    """
    Plots given spectral distribution chromaticity coordinates into the
    *Chromaticity Diagram* using given method.

    Parameters
    ----------
    sds : array_like or MultiSpectralDistributions
        Spectral distributions or multi-spectral distributions to
        plot. `sds` can be a single
        :class:`colour.MultiSpectralDistributions` class instance, a list
        of :class:`colour.MultiSpectralDistributions` class instances or a
        list of :class:`colour.SpectralDistribution` class instances.
    cmfs : unicode or XYZ_ColourMatchingFunctions, optional
        Standard observer colour matching functions used for computing the
        spectral locus boundaries. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    chromaticity_diagram_callable : callable, optional
        Callable responsible for drawing the *Chromaticity Diagram*.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.
    annotate_kwargs : dict or array_like, optional
        Keyword arguments for the :func:`plt.annotate` definition, used to
        annotate the resulting chromaticity coordinates with their respective
        spectral distribution names. ``annotate_kwargs`` can be either a single
        dictionary applied to all the arrows with same settings or a sequence
        of dictionaries with different settings for each spectral distribution.
        The following special keyword arguments can also be used:

        -   *annotate* : bool, whether to annotate the spectral distributions.
    plot_kwargs : dict or array_like, optional
        Keyword arguments for the :func:`plt.plot` definition, used to control
        the style of the plotted spectral distributions. ``plot_kwargs`` can be
        either a single dictionary applied to all the plotted spectral
        distributions with same settings or a sequence of dictionaries with
        different settings for each plotted spectral distributions.
        The following special keyword arguments can also be used:

        -   *illuminant* : unicode or :class:`colour.SpectralDistribution`, the
            illuminant used to compute the spectral distributions colours. The
            default is the illuminant associated with the whitepoint of the
            default plotting colourspace. ``illuminant`` can be of any type or
            form supported by the :func:`colour.plotting.filter_cmfs`
            definition.
        -   *cmfs* : unicode, the standard observer colour matching functions
            used for computing the spectral distributions colours. ``cmfs`` can
            be of any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   *normalise_sd_colours* : bool, whether to normalise the computed
            spectral distributions colours. The default is *True*.
        -   *use_sd_colours* : bool, whether to use the computed spectral
            distributions colours under the plotting colourspace illuminant.
            Alternatively, it is possible to use the :func:`plt.plot`
            definition ``color`` argument with pre-computed values. The default
            is *True*.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.diagrams.plot_chromaticity_diagram`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.
        Also handles keywords arguments for deprecation management.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> A = SDS_ILLUMINANTS['A']
    >>> D65 = SDS_ILLUMINANTS['D65']
    >>> annotate_kwargs = [
    ...     {'xytext': (-25, 15), 'arrowprops':{'arrowstyle':'-'}},
    ...     {}
    ... ]
    >>> plot_kwargs = [
    ...     {
    ...         'illuminant': SDS_ILLUMINANTS['E'],
    ...         'markersize' : 15,
    ...         'normalise_sd_colours': True,
    ...         'use_sd_colours': True
    ...     },
    ...     {'illuminant': SDS_ILLUMINANTS['E']},
    ... ]
    >>> plot_sds_in_chromaticity_diagram(
    ...     [A, D65], annotate_kwargs=annotate_kwargs, plot_kwargs=plot_kwargs)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_SDS_In_Chromaticity_Diagram.png
        :align: center
        :alt: plot_sds_in_chromaticity_diagram
    """

    annotate_kwargs = handle_arguments_deprecation(
        {
            'ArgumentRenamed': [['annotate_parameters', 'annotate_kwargs']],
        }, **kwargs).get('annotate_kwargs', annotate_kwargs)

    sds = sds_and_msds_to_sds(sds)

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    method = method.upper()

    settings.update({
        'axes': axes,
        'standalone': False,
        'method': method,
        'cmfs': cmfs,
    })

    chromaticity_diagram_callable(**settings)

    if method == 'CIE 1931':

        def XYZ_to_ij(XYZ):
            """
            Converts given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return XYZ_to_xy(XYZ)

        bounding_box = (-0.1, 0.9, -0.1, 0.9)
    elif method == 'CIE 1960 UCS':

        def XYZ_to_ij(XYZ):
            """
            Converts given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return UCS_to_uv(XYZ_to_UCS(XYZ))

        bounding_box = (-0.1, 0.7, -0.2, 0.6)

    elif method == 'CIE 1976 UCS':

        def XYZ_to_ij(XYZ):
            """
            Converts given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return Luv_to_uv(XYZ_to_Luv(XYZ))

        bounding_box = (-0.1, 0.7, -0.1, 0.7)
    else:
        raise ValueError(
            'Invalid method: "{0}", must be one of '
            '[\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\']'.format(
                method))

    annotate_settings_collection = [{
        'annotate': True,
        'xytext': (-50, 30),
        'textcoords': 'offset points',
        'arrowprops': CONSTANTS_ARROW_STYLE,
    } for _ in range(len(sds))]

    if annotate_kwargs is not None:
        update_settings_collection(annotate_settings_collection,
                                   annotate_kwargs, len(sds))

    plot_settings_collection = [{
        'color':
        CONSTANTS_COLOUR_STYLE.colour.brightest,
        'label':
        '{0}'.format(sd.strict_name),
        'marker':
        'o',
        'markeredgecolor':
        CONSTANTS_COLOUR_STYLE.colour.dark,
        'markeredgewidth':
        CONSTANTS_COLOUR_STYLE.geometry.short * 0.75,
        'markersize': (CONSTANTS_COLOUR_STYLE.geometry.short * 6 +
                       CONSTANTS_COLOUR_STYLE.geometry.short * 0.75),
        'cmfs':
        cmfs,
        'illuminant':
        SDS_ILLUMINANTS[
            CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint_name],
        'use_sd_colours':
        False,
        'normalise_sd_colours':
        False,
    } for sd in sds]

    if plot_kwargs is not None:
        update_settings_collection(plot_settings_collection, plot_kwargs,
                                   len(sds))

    for i, sd in enumerate(sds):
        plot_settings = plot_settings_collection[i]

        cmfs = first_item(filter_cmfs(plot_settings.pop('cmfs')).values())
        illuminant = first_item(
            filter_illuminants(plot_settings.pop('illuminant')).values())
        normalise_sd_colours = plot_settings.pop('normalise_sd_colours')
        use_sd_colours = plot_settings.pop('use_sd_colours')

        with domain_range_scale('1'):
            XYZ = sd_to_XYZ(sd, cmfs, illuminant)

        if use_sd_colours:
            if normalise_sd_colours:
                XYZ /= XYZ[..., 1]

            plot_settings['color'] = np.clip(XYZ_to_plotting_colourspace(XYZ),
                                             0, 1)

        ij = XYZ_to_ij(XYZ)

        axes.plot(ij[0], ij[1], **plot_settings)

        if (sd.name is not None
                and annotate_settings_collection[i]['annotate']):
            annotate_settings = annotate_settings_collection[i]
            annotate_settings.pop('annotate')

            axes.annotate(sd.name, xy=ij, **annotate_settings)

    settings.update({'standalone': True, 'bounding_box': bounding_box})
    settings.update(kwargs)

    return render(**settings)
Esempio n. 6
0
def plot_blackbody_spectral_radiance(
        temperature=3500,
        cmfs='CIE 1931 2 Degree Standard Observer',
        blackbody='VY Canis Major',
        **kwargs):
    """
    Plots given blackbody spectral radiance.

    Parameters
    ----------
    temperature : numeric, optional
        Blackbody temperature.
    cmfs : unicode, optional
        Standard observer colour matching functions.
    blackbody : unicode, optional
        Blackbody name.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_single_sd`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_blackbody_spectral_radiance(3500, blackbody='VY Canis Major')
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 2 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Blackbody_Spectral_Radiance.png
        :align: center
        :alt: plot_blackbody_spectral_radiance
    """

    figure = plt.figure()

    figure.subplots_adjust(hspace=COLOUR_STYLE_CONSTANTS.geometry.short / 2)

    cmfs = first_item(filter_cmfs(cmfs).values())

    sd = sd_blackbody(temperature, cmfs.shape)

    axes = figure.add_subplot(211)
    settings = {
        'axes': axes,
        'title': '{0} - Spectral Radiance'.format(blackbody),
        'y_label': 'W / (sr m$^2$) / m',
    }
    settings.update(kwargs)
    settings['standalone'] = False

    plot_single_sd(sd, cmfs.name, **settings)

    axes = figure.add_subplot(212)

    with domain_range_scale('1'):
        XYZ = sd_to_XYZ(sd, cmfs)

    RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ))

    settings = {
        'axes': axes,
        'aspect': None,
        'title': '{0} - Colour'.format(blackbody),
        'x_label': '{0}K'.format(temperature),
        'y_label': '',
        'x_ticker': False,
        'y_ticker': False,
    }
    settings.update(kwargs)
    settings['standalone'] = False

    figure, axes = plot_single_colour_swatch(ColourSwatch(name='', RGB=RGB),
                                             **settings)

    settings = {'axes': axes, 'standalone': True}
    settings.update(kwargs)

    return render(**settings)
Esempio n. 7
0
def plot_chromaticity_diagram_colours(
        samples=256,
        diagram_opacity=1.0,
        diagram_clipping_path=None,
        cmfs='CIE 1931 2 Degree Standard Observer',
        method='CIE 1931',
        **kwargs):
    """
    Plots the *Chromaticity Diagram* colours according to given method.

    Parameters
    ----------
    samples : numeric, optional
        Samples count on one axis.
    diagram_opacity : numeric, optional
        Opacity of the *Chromaticity Diagram* colours.
    diagram_clipping_path : array_like, optional
        Path of points used to clip the *Chromaticity Diagram* colours.
    cmfs : unicode, optional
        Standard observer colour matching functions used for
        *Chromaticity Diagram* bounds.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_chromaticity_diagram_colours()  # doctest: +SKIP

    .. image:: ../_static/Plotting_Plot_Chromaticity_Diagram_Colours.png
        :align: center
        :alt: plot_chromaticity_diagram_colours
    """

    settings = {'uniform': True}
    settings.update(kwargs)

    figure, axes = artist(**settings)

    method = method.upper()

    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = COLOUR_STYLE_CONSTANTS.colour.colourspace.whitepoint

    ii, jj = np.meshgrid(
        np.linspace(0, 1, samples), np.linspace(1, 0, samples))
    ij = tstack([ii, jj])

    if method == 'CIE 1931':
        XYZ = xy_to_XYZ(ij)
        spectral_locus = XYZ_to_xy(cmfs.values, illuminant)
    elif method == 'CIE 1960 UCS':
        XYZ = xy_to_XYZ(UCS_uv_to_xy(ij))
        spectral_locus = UCS_to_uv(XYZ_to_UCS(cmfs.values))
    elif method == 'CIE 1976 UCS':
        XYZ = xy_to_XYZ(Luv_uv_to_xy(ij))
        spectral_locus = Luv_to_uv(
            XYZ_to_Luv(cmfs.values, illuminant), illuminant)
    else:
        raise ValueError(
            'Invalid method: "{0}", must be one of '
            '{\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\'}'.format(
                method))

    RGB = normalise_maximum(
        XYZ_to_plotting_colourspace(XYZ, illuminant), axis=-1)

    polygon = Polygon(
        spectral_locus
        if diagram_clipping_path is None else diagram_clipping_path,
        facecolor='none',
        edgecolor='none')
    axes.add_patch(polygon)
    # Preventing bounding box related issues as per
    # https://github.com/matplotlib/matplotlib/issues/10529
    image = axes.imshow(
        RGB,
        interpolation='bilinear',
        extent=(0, 1, 0, 1),
        clip_path=None,
        alpha=diagram_opacity)
    image.set_clip_path(polygon)

    settings = {'axes': axes}
    settings.update(kwargs)

    return render(**kwargs)
Esempio n. 8
0
def plot_hull_section_contour(
    hull: trimesh.Trimesh,  # type: ignore[name-defined]  # noqa
    model: Union[Literal["CAM02LCD", "CAM02SCD", "CAM02UCS", "CAM16LCD",
                         "CAM16SCD", "CAM16UCS", "CIE XYZ", "CIE xyY",
                         "CIE Lab", "CIE Luv", "CIE UCS", "CIE UVW", "DIN99",
                         "Hunter Lab", "Hunter Rdab", "ICaCb", "ICtCp", "IPT",
                         "IgPgTg", "Jzazbz", "OSA UCS", "Oklab", "hdr-CIELAB",
                         "hdr-IPT", ], str, ] = "CIE xyY",
    axis: Union[Literal["+z", "+x", "+y"], str] = "+z",
    origin: Floating = 0.5,
    normalise: Boolean = True,
    contour_colours: Optional[Union[ArrayLike, str]] = None,
    contour_opacity: Floating = 1,
    convert_kwargs: Optional[Dict] = None,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the section contour of given *trimesh* hull along given axis and
    origin.

    Parameters
    ----------
    hull
        *Trimesh* hull.
    model
        Colourspace model, see :attr:`colour.COLOURSPACE_MODELS` attribute for
        the list of supported colourspace models.
    axis
        Axis the hull section will be normal to.
    origin
        Coordinate along ``axis`` at which to plot the hull section.
    normalise
        Whether to normalise ``axis`` to the extent of the hull along it.
    contour_colours
        Colours of the hull section contour, if ``contour_colours`` is set to
        *RGB*, the colours will be computed according to the corresponding
        coordinates.
    contour_opacity
        Opacity of the hull section contour.
    convert_kwargs
        Keyword arguments for the :func:`colour.convert` definition.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> from colour.models import RGB_COLOURSPACE_sRGB
    >>> from colour.utilities import is_trimesh_installed
    >>> vertices, faces, _outline = primitive_cube(1, 1, 1, 64, 64, 64)
    >>> XYZ_vertices = RGB_to_XYZ(
    ...     vertices['position'] + 0.5,
    ...     RGB_COLOURSPACE_sRGB.whitepoint,
    ...     RGB_COLOURSPACE_sRGB.whitepoint,
    ...     RGB_COLOURSPACE_sRGB.matrix_RGB_to_XYZ,
    ... )
    >>> if is_trimesh_installed:
    ...     import trimesh
    ...     hull = trimesh.Trimesh(XYZ_vertices, faces, process=False)
    ...     plot_hull_section_contour(hull, contour_colours='RGB')
    ...     # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Hull_Section_Contour.png
        :align: center
        :alt: plot_hull_section_contour
    """

    hull = hull.copy()

    contour_colours = cast(
        Union[ArrayLike, str],
        optional(contour_colours, CONSTANTS_COLOUR_STYLE.colour.dark),
    )

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    convert_kwargs = optional(convert_kwargs, {})

    # Luminance / Lightness is re-ordered along "z-up" axis.
    with suppress_warnings(python_warnings=True):
        ijk_vertices = colourspace_model_axis_reorder(
            convert(hull.vertices, "CIE XYZ", model, **convert_kwargs), model)
        ijk_vertices = np.nan_to_num(ijk_vertices)
        ijk_vertices *= COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[
            model]

    hull.vertices = ijk_vertices

    plane = MAPPING_AXIS_TO_PLANE[axis]

    padding = 0.1 * np.mean(
        COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[model])
    min_x = np.min(ijk_vertices[..., plane[0]]) - padding
    max_x = np.max(ijk_vertices[..., plane[0]]) + padding
    min_y = np.min(ijk_vertices[..., plane[1]]) - padding
    max_y = np.max(ijk_vertices[..., plane[1]]) + padding
    extent = (min_x, max_x, min_y, max_y)

    use_RGB_contour_colours = str(contour_colours).upper() == "RGB"
    section = hull_section(hull, axis, origin, normalise)
    if use_RGB_contour_colours:
        ijk_section = section / (
            COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[model])
        XYZ_section = convert(
            colourspace_model_axis_reorder(ijk_section, model, "Inverse"),
            model,
            "CIE XYZ",
            **convert_kwargs,
        )
        contour_colours = np.clip(XYZ_to_plotting_colourspace(XYZ_section), 0,
                                  1)

    section = np.reshape(section[..., plane], (-1, 1, 2))
    line_collection = LineCollection(
        np.concatenate([section[:-1], section[1:]], axis=1),
        colors=contour_colours,
        alpha=contour_opacity,
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_line,
    )
    axes.add_collection(line_collection)

    settings = {
        "axes": axes,
        "bounding_box": extent,
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 9
0
def plot_multi_sds(sds,
                   cmfs='CIE 1931 2 Degree Standard Observer',
                   use_sds_colours=False,
                   normalise_sds_colours=False,
                   **kwargs):
    """
    Plots given spectral distributions.

    Parameters
    ----------
    sds : array_like or MultiSpectralDistributions
        Spectral distributions or multi-spectral distributions to
        plot. `sds` can be a single
        :class:`colour.MultiSpectralDistributions` class instance, a list
        of :class:`colour.MultiSpectralDistributions` class instances or a
        list of :class:`colour.SpectralDistribution` class instances.
    cmfs : unicode, optional
        Standard observer colour matching functions used for spectrum creation.
    use_sds_colours : bool, optional
        Whether to use spectral distributions colours.
    normalise_sds_colours : bool
        Whether to normalise spectral distributions colours.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> from colour import SpectralDistribution
    >>> data_1 = {
    ...     500: 0.004900,
    ...     510: 0.009300,
    ...     520: 0.063270,
    ...     530: 0.165500,
    ...     540: 0.290400,
    ...     550: 0.433450,
    ...     560: 0.594500
    ... }
    >>> data_2 = {
    ...     500: 0.323000,
    ...     510: 0.503000,
    ...     520: 0.710000,
    ...     530: 0.862000,
    ...     540: 0.954000,
    ...     550: 0.994950,
    ...     560: 0.995000
    ... }
    >>> sd_1 = SpectralDistribution(data_1, name='Custom 1')
    >>> sd_2 = SpectralDistribution(data_2, name='Custom 2')
    >>> plot_multi_sds([sd_1, sd_2])  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Multi_SDS.png
        :align: center
        :alt: plot_multi_sds
    """

    _figure, axes = artist(**kwargs)

    sds = sds_and_multi_sds_to_sds(sds)
    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = ILLUMINANTS_SDS[
        COLOUR_STYLE_CONSTANTS.colour.colourspace.illuminant]

    x_limit_min, x_limit_max, y_limit_min, y_limit_max = [], [], [], []
    for sd in sds:
        wavelengths, values = sd.wavelengths, sd.values

        shape = sd.shape
        x_limit_min.append(shape.start)
        x_limit_max.append(shape.end)
        y_limit_min.append(min(values))
        y_limit_max.append(max(values))

        if use_sds_colours:
            with domain_range_scale('1'):
                XYZ = sd_to_XYZ(sd, cmfs, illuminant)

            if normalise_sds_colours:
                XYZ = normalise_maximum(XYZ, clip=False)

            RGB = np.clip(XYZ_to_plotting_colourspace(XYZ), 0, 1)

            axes.plot(wavelengths, values, color=RGB, label=sd.strict_name)
        else:
            axes.plot(wavelengths, values, label=sd.strict_name)

    bounding_box = (min(x_limit_min), max(x_limit_max), min(y_limit_min),
                    max(y_limit_max) + max(y_limit_max) * 0.05)
    settings = {
        'axes': axes,
        'bounding_box': bounding_box,
        'legend': True,
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Distribution',
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 10
0
def plot_multi_sds(
    sds: Union[Sequence[Union[SpectralDistribution,
                              MultiSpectralDistributions]],
               MultiSpectralDistributions, ],
    plot_kwargs: Optional[Union[Dict, List[Dict]]] = None,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot given spectral distributions.

    Parameters
    ----------
    sds
        Spectral distributions or multi-spectral distributions to
        plot. `sds` can be a single
        :class:`colour.MultiSpectralDistributions` class instance, a list
        of :class:`colour.MultiSpectralDistributions` class instances or a
        list of :class:`colour.SpectralDistribution` class instances.
    plot_kwargs
        Keyword arguments for the :func:`matplotlib.pyplot.plot` definition,
        used to control the style of the plotted spectral distributions.
        `plot_kwargs`` can be either a single dictionary applied to all the
        plotted spectral distributions with the same settings or a sequence of
        dictionaries with different settings for each plotted spectral
        distributions. The following special keyword arguments can also be
        used:

        -   ``illuminant`` : The illuminant used to compute the spectral
            distributions colours. The default is the illuminant associated
            with the whitepoint of the default plotting colourspace.
            ``illuminant`` can be of any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   ``cmfs`` : The standard observer colour matching functions used for
            computing the spectral distributions colours. ``cmfs`` can be of
            any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   ``normalise_sd_colours`` : Whether to normalise the computed
            spectral distributions colours. The default is *True*.
        -   ``use_sd_colours`` : Whether to use the computed spectral
            distributions colours under the plotting colourspace illuminant.
            Alternatively, it is possible to use the
            :func:`matplotlib.pyplot.plot` definition ``color`` argument with
            pre-computed values. The default is *True*.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> from colour import SpectralDistribution
    >>> data_1 = {
    ...     500: 0.004900,
    ...     510: 0.009300,
    ...     520: 0.063270,
    ...     530: 0.165500,
    ...     540: 0.290400,
    ...     550: 0.433450,
    ...     560: 0.594500
    ... }
    >>> data_2 = {
    ...     500: 0.323000,
    ...     510: 0.503000,
    ...     520: 0.710000,
    ...     530: 0.862000,
    ...     540: 0.954000,
    ...     550: 0.994950,
    ...     560: 0.995000
    ... }
    >>> sd_1 = SpectralDistribution(data_1, name='Custom 1')
    >>> sd_2 = SpectralDistribution(data_2, name='Custom 2')
    >>> plot_kwargs = [
    ...     {'use_sd_colours': True},
    ...     {'use_sd_colours': True, 'linestyle': 'dashed'},
    ... ]
    >>> plot_multi_sds([sd_1, sd_2], plot_kwargs=plot_kwargs)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Multi_SDS.png
        :align: center
        :alt: plot_multi_sds
    """

    _figure, axes = artist(**kwargs)

    sds_converted = sds_and_msds_to_sds(sds)

    plot_settings_collection = [{
        "label":
        f"{sd.strict_name}",
        "zorder":
        CONSTANTS_COLOUR_STYLE.zorder.midground_line,
        "cmfs":
        "CIE 1931 2 Degree Standard Observer",
        "illuminant":
        SDS_ILLUMINANTS[
            CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint_name],
        "use_sd_colours":
        False,
        "normalise_sd_colours":
        False,
    } for sd in sds_converted]

    if plot_kwargs is not None:
        update_settings_collection(plot_settings_collection, plot_kwargs,
                                   len(sds_converted))

    x_limit_min, x_limit_max, y_limit_min, y_limit_max = [], [], [], []
    for i, sd in enumerate(sds_converted):
        plot_settings = plot_settings_collection[i]

        cmfs = cast(
            MultiSpectralDistributions,
            first_item(filter_cmfs(plot_settings.pop("cmfs")).values()),
        )
        illuminant = cast(
            SpectralDistribution,
            first_item(
                filter_illuminants(plot_settings.pop("illuminant")).values()),
        )
        normalise_sd_colours = plot_settings.pop("normalise_sd_colours")
        use_sd_colours = plot_settings.pop("use_sd_colours")

        wavelengths, values = sd.wavelengths, sd.values

        shape = sd.shape
        x_limit_min.append(shape.start)
        x_limit_max.append(shape.end)
        y_limit_min.append(min(values))
        y_limit_max.append(max(values))

        if use_sd_colours:
            with domain_range_scale("1"):
                XYZ = sd_to_XYZ(sd, cmfs, illuminant)

            if normalise_sd_colours:
                XYZ /= XYZ[..., 1]

            plot_settings["color"] = np.clip(XYZ_to_plotting_colourspace(XYZ),
                                             0, 1)

        axes.plot(wavelengths, values, **plot_settings)

    bounding_box = (
        min(x_limit_min),
        max(x_limit_max),
        min(y_limit_min),
        max(y_limit_max) + np.max(y_limit_max) * 0.05,
    )
    settings: Dict[str, Any] = {
        "axes": axes,
        "bounding_box": bounding_box,
        "legend": True,
        "x_label": "Wavelength $\\lambda$ (nm)",
        "y_label": "Spectral Distribution",
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 11
0
def plot_with_rainbow_fill(ax=None,
                           wavelength=None,
                           flux=None,
                           cmfs="CIE 1931 2 Degree Standard Observer",
                           rainbowtop=np.inf,
                           **kwargs):
    """
    (This is still *real* blarg-y*.)
    Plot a spectrum, with a rainbow underneath.

    Parameters
    ----------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow should be drawn.
    cmfs : string
        The color matching function(s?) to use.

    Returns
    -------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow was drawn.
    """

    if ax is None:
        ax = plt.gca()

    if wavelength is None:
        # create a grid of wavelengths (at which CMFss are useful)
        wavelength = CMFs.wavelengths

    # create y values that will be plotted (these could be spectrum)
    if flux is None:
        flux = np.ones_like(wavelength)

    # pull out only the values that *can* be converted to colors
    ok = (wavelength >= np.min(CMFs.wavelengths)) & (wavelength <= np.max(
        CMFs.wavelengths))

    w, f = wavelength[ok], flux[ok]

    # clip the top of the box?
    f = np.minimum(f, rainbowtop)

    XYZ = wavelength_to_XYZ(w)

    # create colors at theose wavelengths
    colours = XYZ_to_plotting_colourspace(XYZ)

    # normalize the colors to their maximum?
    # colours = CONSTANTS_COLOUR_STYLE.colour.colourspace.cctf_encoding(
    #    normalise_maximum(colours))
    colours = np.maximum(0, colours / np.max(colours))

    x_min, x_max = min(w), max(w)
    y_min, y_max = 0, max(f) + max(f) * 0.05

    # create a polygon to define the top of the bars?
    polygon = Polygon(
        np.vstack([
            (x_min, 0),
            tstack([w, f]),
            (x_max, 0),
        ]),
        facecolor="none",
        edgecolor="none",
    )
    ax.add_patch(polygon)

    # draw bars, with the colors at each vertical stripe
    padding = 0.0
    dw = np.mean(np.diff(w))
    ax.bar(
        x=w,
        height=f,
        width=dw,
        color=colours,
        clip_path=polygon,
        align="edge",
        clip_on=True,
    )

    return ax
Esempio n. 12
0
def plot_blackbody_colours(
    shape: SpectralShape = SpectralShape(150, 12500, 50),
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot blackbody colours.

    Parameters
    ----------
    shape
        Spectral shape to use as plot boundaries.
    cmfs
        Standard observer colour matching functions used for computing the
        blackbody colours. ``cmfs`` can be of any type or form supported by the
        :func:`colour.plotting.filter_cmfs` definition.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_blackbody_colours(SpectralShape(150, 12500, 50))
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Blackbody_Colours.png
        :align: center
        :alt: plot_blackbody_colours
    """

    _figure, axes = artist(**kwargs)

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    RGB = []
    temperatures = []

    for temperature in shape:
        sd = sd_blackbody(temperature, cmfs.shape)

        with domain_range_scale("1"):
            XYZ = sd_to_XYZ(sd, cmfs)

        RGB.append(normalise_maximum(XYZ_to_plotting_colourspace(XYZ)))
        temperatures.append(temperature)

    x_min, x_max = min(temperatures), max(temperatures)
    y_min, y_max = 0, 1

    padding = 0.1
    axes.bar(
        x=np.array(temperatures) - padding,
        height=1,
        width=shape.interval + (padding * shape.interval),
        color=RGB,
        align="edge",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
    )

    settings: Dict[str, Any] = {
        "axes": axes,
        "bounding_box": (x_min, x_max, y_min, y_max),
        "title": "Blackbody Colours",
        "x_label": "Temperature K",
        "y_label": None,
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 13
0
def plot_single_sd(
    sd: SpectralDistribution,
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    out_of_gamut_clipping: Boolean = True,
    modulate_colours_with_sd_amplitude: Boolean = False,
    equalize_sd_amplitude: Boolean = False,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot given spectral distribution.

    Parameters
    ----------
    sd
        Spectral distribution to plot.
    cmfs
        Standard observer colour matching functions used for computing the
        spectrum domain and colours. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    out_of_gamut_clipping
        Whether to clip out of gamut colours otherwise, the colours will be
        offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother.
    modulate_colours_with_sd_amplitude
        Whether to modulate the colours with the spectral distribution
        amplitude.
    equalize_sd_amplitude
        Whether to equalize the spectral distribution amplitude.
        Equalization occurs after the colours modulation thus setting both
        arguments to *True* will generate a spectrum strip where each
        wavelength colour is modulated by the spectral distribution amplitude.
        The usual 5% margin above the spectral distribution is also omitted.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    References
    ----------
    :cite:`Spiker2015a`

    Examples
    --------
    >>> from colour import SpectralDistribution
    >>> data = {
    ...     500: 0.0651,
    ...     520: 0.0705,
    ...     540: 0.0772,
    ...     560: 0.0870,
    ...     580: 0.1128,
    ...     600: 0.1360
    ... }
    >>> sd = SpectralDistribution(data, name='Custom')
    >>> plot_single_sd(sd)  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Single_SD.png
        :align: center
        :alt: plot_single_sd
    """

    _figure, axes = artist(**kwargs)

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    sd = cast(SpectralDistribution, sd.copy())
    sd.interpolator = LinearInterpolator
    wavelengths = cmfs.wavelengths[np.logical_and(
        cmfs.wavelengths >= max(min(cmfs.wavelengths), min(sd.wavelengths)),
        cmfs.wavelengths <= min(max(cmfs.wavelengths), max(sd.wavelengths)),
    )]
    values = as_float_array(sd[wavelengths])

    RGB = XYZ_to_plotting_colourspace(
        wavelength_to_XYZ(wavelengths, cmfs),
        CCS_ILLUMINANTS["CIE 1931 2 Degree Standard Observer"]["E"],
        apply_cctf_encoding=False,
    )

    if not out_of_gamut_clipping:
        RGB += np.abs(np.min(RGB))

    RGB = normalise_maximum(RGB)

    if modulate_colours_with_sd_amplitude:
        RGB *= (values / np.max(values))[..., np.newaxis]

    RGB = CONSTANTS_COLOUR_STYLE.colour.colourspace.cctf_encoding(RGB)

    if equalize_sd_amplitude:
        values = ones(values.shape)

    margin = 0 if equalize_sd_amplitude else 0.05

    x_min, x_max = min(wavelengths), max(wavelengths)
    y_min, y_max = 0, max(values) + max(values) * margin

    polygon = Polygon(
        np.vstack([
            (x_min, 0),
            tstack([wavelengths, values]),
            (x_max, 0),
        ]),
        facecolor="none",
        edgecolor="none",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
    )
    axes.add_patch(polygon)

    padding = 0.1
    axes.bar(
        x=wavelengths - padding,
        height=max(values),
        width=1 + padding,
        color=RGB,
        align="edge",
        clip_path=polygon,
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
    )

    axes.plot(
        wavelengths,
        values,
        color=CONSTANTS_COLOUR_STYLE.colour.dark,
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_line,
    )

    settings: Dict[str, Any] = {
        "axes": axes,
        "bounding_box": (x_min, x_max, y_min, y_max),
        "title": f"{sd.strict_name} - {cmfs.strict_name}",
        "x_label": "Wavelength $\\lambda$ (nm)",
        "y_label": "Spectral Distribution",
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 14
0
def plot_sds_in_chromaticity_diagram(
    sds: Union[Sequence[Union[SpectralDistribution,
                              MultiSpectralDistributions]],
               MultiSpectralDistributions, ],
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    chromaticity_diagram_callable: Callable = plot_chromaticity_diagram,
    method: Union[Literal["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"],
                  str] = "CIE 1931",
    annotate_kwargs: Optional[Union[Dict, List[Dict]]] = None,
    plot_kwargs: Optional[Union[Dict, List[Dict]]] = None,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot given spectral distribution chromaticity coordinates into the
    *Chromaticity Diagram* using given method.

    Parameters
    ----------
    sds
        Spectral distributions or multi-spectral distributions to
        plot. `sds` can be a single
        :class:`colour.MultiSpectralDistributions` class instance, a list
        of :class:`colour.MultiSpectralDistributions` class instances or a
        list of :class:`colour.SpectralDistribution` class instances.
    cmfs
        Standard observer colour matching functions used for computing the
        spectral locus boundaries. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    chromaticity_diagram_callable
        Callable responsible for drawing the *Chromaticity Diagram*.
    method
        *Chromaticity Diagram* method.
    annotate_kwargs
        Keyword arguments for the :func:`matplotlib.pyplot.annotate`
        definition, used to annotate the resulting chromaticity coordinates
        with their respective spectral distribution names. ``annotate_kwargs``
        can be either a single dictionary applied to all the arrows with same
        settings or a sequence of dictionaries with different settings for each
        spectral distribution. The following special keyword arguments can also
        be used:

        -   ``annotate`` : Whether to annotate the spectral distributions.
    plot_kwargs
        Keyword arguments for the :func:`matplotlib.pyplot.plot` definition,
        used to control the style of the plotted spectral distributions.
        `plot_kwargs`` can be either a single dictionary applied to all the
        plotted spectral distributions with the same settings or a sequence of
        dictionaries with different settings for each plotted spectral
        distributions. The following special keyword arguments can also be
        used:

        -   ``illuminant`` : The illuminant used to compute the spectral
            distributions colours. The default is the illuminant associated
            with the whitepoint of the default plotting colourspace.
            ``illuminant`` can be of any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   ``cmfs`` : The standard observer colour matching functions used for
            computing the spectral distributions colours. ``cmfs`` can be of
            any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   ``normalise_sd_colours`` : Whether to normalise the computed
            spectral distributions colours. The default is *True*.
        -   ``use_sd_colours`` : Whether to use the computed spectral
            distributions colours under the plotting colourspace illuminant.
            Alternatively, it is possible to use the
            :func:`matplotlib.pyplot.plot` definition ``color`` argument with
            pre-computed values. The default is *True*.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.diagrams.plot_chromaticity_diagram`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> A = SDS_ILLUMINANTS['A']
    >>> D65 = SDS_ILLUMINANTS['D65']
    >>> annotate_kwargs = [
    ...     {'xytext': (-25, 15), 'arrowprops':{'arrowstyle':'-'}},
    ...     {}
    ... ]
    >>> plot_kwargs = [
    ...     {
    ...         'illuminant': SDS_ILLUMINANTS['E'],
    ...         'markersize' : 15,
    ...         'normalise_sd_colours': True,
    ...         'use_sd_colours': True
    ...     },
    ...     {'illuminant': SDS_ILLUMINANTS['E']},
    ... ]
    >>> plot_sds_in_chromaticity_diagram(
    ...     [A, D65], annotate_kwargs=annotate_kwargs, plot_kwargs=plot_kwargs)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_SDS_In_Chromaticity_Diagram.png
        :align: center
        :alt: plot_sds_in_chromaticity_diagram
    """

    method = validate_method(method,
                             ["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"])

    sds_converted = sds_and_msds_to_sds(sds)

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    settings.update({
        "axes": axes,
        "standalone": False,
        "method": method,
        "cmfs": cmfs,
    })

    chromaticity_diagram_callable(**settings)

    if method == "cie 1931":

        def XYZ_to_ij(XYZ: NDArray) -> NDArray:
            """
            Convert given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return XYZ_to_xy(XYZ)

        bounding_box = (-0.1, 0.9, -0.1, 0.9)
    elif method == "cie 1960 ucs":

        def XYZ_to_ij(XYZ: NDArray) -> NDArray:
            """
            Convert given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return UCS_to_uv(XYZ_to_UCS(XYZ))

        bounding_box = (-0.1, 0.7, -0.2, 0.6)

    elif method == "cie 1976 ucs":

        def XYZ_to_ij(XYZ: NDArray) -> NDArray:
            """
            Convert given *CIE XYZ* tristimulus values to *ij* chromaticity
            coordinates.
            """

            return Luv_to_uv(XYZ_to_Luv(XYZ))

        bounding_box = (-0.1, 0.7, -0.1, 0.7)

    annotate_settings_collection = [{
        "annotate":
        True,
        "xytext": (-50, 30),
        "textcoords":
        "offset points",
        "arrowprops":
        CONSTANTS_ARROW_STYLE,
        "zorder":
        CONSTANTS_COLOUR_STYLE.zorder.midground_annotation,
    } for _ in range(len(sds_converted))]

    if annotate_kwargs is not None:
        update_settings_collection(annotate_settings_collection,
                                   annotate_kwargs, len(sds_converted))

    plot_settings_collection = [{
        "color":
        CONSTANTS_COLOUR_STYLE.colour.brightest,
        "label":
        f"{sd.strict_name}",
        "marker":
        "o",
        "markeredgecolor":
        CONSTANTS_COLOUR_STYLE.colour.dark,
        "markeredgewidth":
        CONSTANTS_COLOUR_STYLE.geometry.short * 0.75,
        "markersize": (CONSTANTS_COLOUR_STYLE.geometry.short * 6 +
                       CONSTANTS_COLOUR_STYLE.geometry.short * 0.75),
        "zorder":
        CONSTANTS_COLOUR_STYLE.zorder.midground_line,
        "cmfs":
        cmfs,
        "illuminant":
        SDS_ILLUMINANTS[
            CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint_name],
        "use_sd_colours":
        False,
        "normalise_sd_colours":
        False,
    } for sd in sds_converted]

    if plot_kwargs is not None:
        update_settings_collection(plot_settings_collection, plot_kwargs,
                                   len(sds_converted))

    for i, sd in enumerate(sds_converted):
        plot_settings = plot_settings_collection[i]

        cmfs = cast(
            MultiSpectralDistributions,
            first_item(filter_cmfs(plot_settings.pop("cmfs")).values()),
        )
        illuminant = cast(
            SpectralDistribution,
            first_item(
                filter_illuminants(plot_settings.pop("illuminant")).values()),
        )
        normalise_sd_colours = plot_settings.pop("normalise_sd_colours")
        use_sd_colours = plot_settings.pop("use_sd_colours")

        with domain_range_scale("1"):
            XYZ = sd_to_XYZ(sd, cmfs, illuminant)

        if use_sd_colours:
            if normalise_sd_colours:
                XYZ /= XYZ[..., 1]

            plot_settings["color"] = np.clip(XYZ_to_plotting_colourspace(XYZ),
                                             0, 1)

        ij = XYZ_to_ij(XYZ)

        axes.plot(ij[0], ij[1], **plot_settings)

        if sd.name is not None and annotate_settings_collection[i]["annotate"]:
            annotate_settings = annotate_settings_collection[i]
            annotate_settings.pop("annotate")

            axes.annotate(sd.name, xy=ij, **annotate_settings)

    settings.update({"standalone": True, "bounding_box": bounding_box})
    settings.update(kwargs)

    return render(**settings)
Esempio n. 15
0
def plot_chromaticity_diagram_colours(
    samples: Integer = 256,
    diagram_colours: Optional[Union[ArrayLike, str]] = None,
    diagram_opacity: Floating = 1,
    diagram_clipping_path: Optional[ArrayLike] = None,
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    method: Union[Literal["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"],
                  str] = "CIE 1931",
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the *Chromaticity Diagram* colours according to given method.

    Parameters
    ----------
    samples
        Samples count on one axis when computing the *Chromaticity Diagram*
        colours.
    diagram_colours
        Colours of the *Chromaticity Diagram*, if ``diagram_colours`` is set
        to *RGB*, the colours will be computed according to the corresponding
        coordinates.
    diagram_opacity
        Opacity of the *Chromaticity Diagram*.
    diagram_clipping_path
        Path of points used to clip the *Chromaticity Diagram* colours.
    cmfs
        Standard observer colour matching functions used for computing the
        spectral locus boundaries. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    method
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_chromaticity_diagram_colours(diagram_colours='RGB')
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Chromaticity_Diagram_Colours.png
        :align: center
        :alt: plot_chromaticity_diagram_colours
    """

    method = validate_method(method,
                             ["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"])

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    diagram_colours = cast(
        ArrayLike,
        optional(diagram_colours,
                 HEX_to_RGB(CONSTANTS_COLOUR_STYLE.colour.average)),
    )

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    illuminant = CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint

    if method == "cie 1931":
        spectral_locus = XYZ_to_xy(cmfs.values, illuminant)
    elif method == "cie 1960 ucs":
        spectral_locus = UCS_to_uv(XYZ_to_UCS(cmfs.values))
    elif method == "cie 1976 ucs":
        spectral_locus = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant),
                                   illuminant)

    use_RGB_diagram_colours = str(diagram_colours).upper() == "RGB"
    if use_RGB_diagram_colours:
        ii, jj = np.meshgrid(np.linspace(0, 1, samples),
                             np.linspace(1, 0, samples))
        ij = tstack([ii, jj])

        # NOTE: Various values in the grid have potential to generate
        # zero-divisions, they could be avoided by perturbing the grid, e.g.
        # adding a small epsilon. It was decided instead to disable warnings.
        with suppress_warnings(python_warnings=True):
            if method == "cie 1931":
                XYZ = xy_to_XYZ(ij)
            elif method == "cie 1960 ucs":
                XYZ = xy_to_XYZ(UCS_uv_to_xy(ij))
            elif method == "cie 1976 ucs":
                XYZ = xy_to_XYZ(Luv_uv_to_xy(ij))

        diagram_colours = normalise_maximum(XYZ_to_plotting_colourspace(
            XYZ, illuminant),
                                            axis=-1)

    polygon = Polygon(
        spectral_locus
        if diagram_clipping_path is None else diagram_clipping_path,
        facecolor="none" if use_RGB_diagram_colours else np.hstack(
            [diagram_colours, diagram_opacity]),
        edgecolor="none" if use_RGB_diagram_colours else np.hstack(
            [diagram_colours, diagram_opacity]),
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
    )
    axes.add_patch(polygon)

    if use_RGB_diagram_colours:
        # Preventing bounding box related issues as per
        # https://github.com/matplotlib/matplotlib/issues/10529
        image = axes.imshow(
            diagram_colours,
            interpolation="bilinear",
            extent=(0, 1, 0, 1),
            clip_path=None,
            alpha=diagram_opacity,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
        )
        image.set_clip_path(polygon)

    settings = {"axes": axes}
    settings.update(kwargs)

    return render(**kwargs)
Esempio n. 16
0
def plot_spectral_locus(
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    spectral_locus_colours: Optional[Union[ArrayLike, str]] = None,
    spectral_locus_opacity: Floating = 1,
    spectral_locus_labels: Optional[Sequence] = None,
    method: Union[Literal["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"],
                  str] = "CIE 1931",
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the *Spectral Locus* according to given method.

    Parameters
    ----------
    cmfs
        Standard observer colour matching functions used for computing the
        spectral locus boundaries. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    spectral_locus_colours
        Colours of the *Spectral Locus*, if ``spectral_locus_colours`` is set
        to *RGB*, the colours will be computed according to the corresponding
        chromaticity coordinates.
    spectral_locus_opacity
        Opacity of the *Spectral Locus*.
    spectral_locus_labels
        Array of wavelength labels used to customise which labels will be drawn
        around the spectral locus. Passing an empty array will result in no
        wavelength labels being drawn.
    method
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_spectral_locus(spectral_locus_colours='RGB')  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Spectral_Locus.png
        :align: center
        :alt: plot_spectral_locus
    """

    method = validate_method(method,
                             ["CIE 1931", "CIE 1960 UCS", "CIE 1976 UCS"])

    spectral_locus_colours = optional(spectral_locus_colours,
                                      CONSTANTS_COLOUR_STYLE.colour.dark)

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    illuminant = CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint

    wavelengths = list(cmfs.wavelengths)
    equal_energy = np.array([1 / 3] * 2)

    if method == "cie 1931":
        ij = XYZ_to_xy(cmfs.values, illuminant)
        labels = cast(
            Tuple,
            optional(
                spectral_locus_labels,
                (
                    390,
                    460,
                    470,
                    480,
                    490,
                    500,
                    510,
                    520,
                    540,
                    560,
                    580,
                    600,
                    620,
                    700,
                ),
            ),
        )
    elif method == "cie 1960 ucs":
        ij = UCS_to_uv(XYZ_to_UCS(cmfs.values))
        labels = cast(
            Tuple,
            optional(
                spectral_locus_labels,
                (
                    420,
                    440,
                    450,
                    460,
                    470,
                    480,
                    490,
                    500,
                    510,
                    520,
                    530,
                    540,
                    550,
                    560,
                    570,
                    580,
                    590,
                    600,
                    610,
                    620,
                    630,
                    645,
                    680,
                ),
            ),
        )
    elif method == "cie 1976 ucs":
        ij = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant), illuminant)
        labels = cast(
            Tuple,
            optional(
                spectral_locus_labels,
                (
                    420,
                    440,
                    450,
                    460,
                    470,
                    480,
                    490,
                    500,
                    510,
                    520,
                    530,
                    540,
                    550,
                    560,
                    570,
                    580,
                    590,
                    600,
                    610,
                    620,
                    630,
                    645,
                    680,
                ),
            ),
        )

    pl_ij = np.reshape(
        tstack([
            np.linspace(ij[0][0], ij[-1][0], 20),
            np.linspace(ij[0][1], ij[-1][1], 20),
        ]),
        (-1, 1, 2),
    )
    sl_ij = np.copy(ij).reshape(-1, 1, 2)

    purple_line_colours: Optional[Union[ArrayLike, str]]
    if str(spectral_locus_colours).upper() == "RGB":
        spectral_locus_colours = normalise_maximum(XYZ_to_plotting_colourspace(
            cmfs.values),
                                                   axis=-1)

        if method == "cie 1931":
            XYZ = xy_to_XYZ(pl_ij)
        elif method == "cie 1960 ucs":
            XYZ = xy_to_XYZ(UCS_uv_to_xy(pl_ij))
        elif method == "cie 1976 ucs":
            XYZ = xy_to_XYZ(Luv_uv_to_xy(pl_ij))

        purple_line_colours = normalise_maximum(XYZ_to_plotting_colourspace(
            np.reshape(XYZ, (-1, 3))),
                                                axis=-1)
    else:
        purple_line_colours = spectral_locus_colours

    for slp_ij, slp_colours in (
        (pl_ij, purple_line_colours),
        (sl_ij, spectral_locus_colours),
    ):
        line_collection = LineCollection(
            np.concatenate([slp_ij[:-1], slp_ij[1:]], axis=1),
            colors=slp_colours,
            alpha=spectral_locus_opacity,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_scatter,
        )
        axes.add_collection(line_collection)

    wl_ij = dict(zip(wavelengths, ij))
    for label in labels:
        ij_l = wl_ij.get(label)

        if ij_l is None:
            continue

        ij_l = as_float_array([ij_l])
        i, j = tsplit(ij_l)

        index = bisect.bisect(wavelengths, label)
        left = wavelengths[index - 1] if index >= 0 else wavelengths[index]
        right = (wavelengths[index]
                 if index < len(wavelengths) else wavelengths[-1])

        dx = wl_ij[right][0] - wl_ij[left][0]
        dy = wl_ij[right][1] - wl_ij[left][1]

        direction = np.array([-dy, dx])

        normal = (np.array([-dy, dx]) if np.dot(
            normalise_vector(ij_l - equal_energy),
            normalise_vector(direction),
        ) > 0 else np.array([dy, -dx]))
        normal = normalise_vector(normal) / 30

        label_colour = (
            spectral_locus_colours if is_string(spectral_locus_colours) else
            spectral_locus_colours[index]  # type: ignore[index]
        )
        axes.plot(
            (i, i + normal[0] * 0.75),
            (j, j + normal[1] * 0.75),
            color=label_colour,
            alpha=spectral_locus_opacity,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_line,
        )

        axes.plot(
            i,
            j,
            "o",
            color=label_colour,
            alpha=spectral_locus_opacity,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_line,
        )

        axes.text(
            i + normal[0],
            j + normal[1],
            label,
            clip_on=True,
            ha="left" if normal[0] >= 0 else "right",
            va="center",
            fontdict={"size": "small"},
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_label,
        )

    settings = {"axes": axes}
    settings.update(kwargs)

    return render(**kwargs)
Esempio n. 17
0
def plot_colour_quality_bars(specifications,
                             labels=True,
                             hatching=None,
                             hatching_repeat=2,
                             **kwargs):
    """
    Plots the colour quality data of given illuminants or light sources colour
    quality specifications.

    Parameters
    ----------
    specifications : array_like
        Array of illuminants or light sources colour quality specifications.
    labels : bool, optional
        Add labels above bars.
    hatching : bool or None, optional
        Use hatching for the bars.
    hatching_repeat : int, optional
        Hatching pattern repeat.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.quality.plot_colour_quality_bars`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> from colour import (ILLUMINANTS_SDS,
    ...                     LIGHT_SOURCES_SDS, SpectralShape)
    >>> illuminant = ILLUMINANTS_SDS['FL2']
    >>> light_source = LIGHT_SOURCES_SDS['Kinoton 75P']
    >>> light_source = light_source.copy().align(SpectralShape(360, 830, 1))
    >>> cqs_i = colour_quality_scale(illuminant, additional_data=True)
    >>> cqs_l = colour_quality_scale(light_source, additional_data=True)
    >>> plot_colour_quality_bars([cqs_i, cqs_l])  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Colour_Quality_Bars.png
        :align: center
        :alt: plot_colour_quality_bars
    """

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    bar_width = 0.5
    y_ticks_interval = 10
    count_s, count_Q_as = len(specifications), 0
    patterns = cycle(COLOUR_STYLE_CONSTANTS.hatch.patterns)
    if hatching is None:
        hatching = False if count_s == 1 else True
    for i, specification in enumerate(specifications):
        Q_a, Q_as, colorimetry_data = (specification.Q_a, specification.Q_as,
                                       specification.colorimetry_data)

        count_Q_as = len(Q_as)
        colours = ([[1] * 3] + [
            np.clip(XYZ_to_plotting_colourspace(x.XYZ), 0, 1)
            for x in colorimetry_data[0]
        ])

        x = (i + np.arange(0, (count_Q_as + 1) * (count_s + 1), (count_s + 1),
                           dtype=DEFAULT_FLOAT_DTYPE)) * bar_width
        y = [s[1].Q_a for s in sorted(Q_as.items(), key=lambda s: s[0])]
        y = np.array([Q_a] + list(y))

        bars = axes.bar(x,
                        np.abs(y),
                        color=colours,
                        width=bar_width,
                        edgecolor=COLOUR_STYLE_CONSTANTS.colour.dark,
                        label=specification.name)

        hatches = ([next(patterns) * hatching_repeat] *
                   (count_Q_as + 1) if hatching else np.where(
                       y < 0, next(patterns), None).tolist())

        for j, bar in enumerate(bars.patches):
            bar.set_hatch(hatches[j])

        if labels:
            label_rectangles(
                ['{0:.1f}'.format(y_v) for y_v in y],
                bars,
                rotation='horizontal' if count_s == 1 else 'vertical',
                offset=(0 if count_s == 1 else 3 / 100 * count_s + 65 / 1000,
                        0.025),
                text_size=-5 / 7 * count_s + 12.5,
                axes=axes)

    axes.axhline(y=100,
                 color=COLOUR_STYLE_CONSTANTS.colour.dark,
                 linestyle='--')

    axes.set_xticks(
        (np.arange(0, (count_Q_as + 1) * (count_s + 1), (count_s + 1),
                   dtype=DEFAULT_FLOAT_DTYPE) * bar_width +
         (count_s * bar_width / 2)), ['Qa'] +
        ['Q{0}'.format(index + 1) for index in range(0, count_Q_as + 1, 1)])
    axes.set_yticks(range(0, 100 + y_ticks_interval, y_ticks_interval))

    aspect = 1 / (120 / (bar_width + len(Q_as) + bar_width * 2))
    bounding_box = (-bar_width, ((count_Q_as + 1) * (count_s + 1)) / 2, 0, 120)

    settings = {
        'axes': axes,
        'aspect': aspect,
        'bounding_box': bounding_box,
        'legend': hatching,
        'title': 'Colour Quality',
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 18
0
def plot_blackbody_spectral_radiance(
    temperature: Floating = 3500,
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    blackbody: str = "VY Canis Major",
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot given blackbody spectral radiance.

    Parameters
    ----------
    temperature
        Blackbody temperature.
    cmfs
        Standard observer colour matching functions used for computing the
        spectrum domain and colours. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    blackbody
        Blackbody name.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_single_sd`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_blackbody_spectral_radiance(3500, blackbody='VY Canis Major')
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 2 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Blackbody_Spectral_Radiance.png
        :align: center
        :alt: plot_blackbody_spectral_radiance
    """

    figure = plt.figure()

    figure.subplots_adjust(hspace=CONSTANTS_COLOUR_STYLE.geometry.short / 2)

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    sd = sd_blackbody(temperature, cmfs.shape)

    axes = figure.add_subplot(211)
    settings: Dict[str, Any] = {
        "axes": axes,
        "title": f"{blackbody} - Spectral Radiance",
        "y_label": "W / (sr m$^2$) / m",
    }
    settings.update(kwargs)
    settings["standalone"] = False

    plot_single_sd(sd, cmfs.name, **settings)

    axes = figure.add_subplot(212)

    with domain_range_scale("1"):
        XYZ = sd_to_XYZ(sd, cmfs)

    RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ))

    settings = {
        "axes": axes,
        "aspect": None,
        "title": f"{blackbody} - Colour",
        "x_label": f"{temperature}K",
        "y_label": "",
        "x_ticker": False,
        "y_ticker": False,
    }
    settings.update(kwargs)
    settings["standalone"] = False

    figure, axes = plot_single_colour_swatch(RGB, **settings)

    settings = {"axes": axes, "standalone": True}
    settings.update(kwargs)

    return render(**settings)
Esempio n. 19
0
def plot_multi_colour_checkers(
    colour_checkers: Union[ColourChecker, str, Sequence[Union[ColourChecker,
                                                              str]]],
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot and compares given colour checkers.

    Parameters
    ----------
    colour_checkers
        Color checker to plot, count must be less than or equal to 2.
        ``colour_checkers`` elements can be of any type or form supported by
        the :func:`colour.plotting.filter_colour_checkers` definition.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_multi_colour_swatches`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005'])
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Multi_Colour_Checkers.png
        :align: center
        :alt: plot_multi_colour_checkers
    """

    filtered_colour_checkers = list(
        filter_colour_checkers(colour_checkers).values())

    attest(
        len(filtered_colour_checkers) <= 2,
        "Only two colour checkers can be compared at a time!",
    )

    _figure, axes = artist(**kwargs)

    compare_swatches = len(filtered_colour_checkers) == 2

    colour_swatches = []
    colour_checker_names = []
    for colour_checker in filtered_colour_checkers:
        colour_checker_names.append(colour_checker.name)
        for label, xyY in colour_checker.data.items():
            XYZ = xyY_to_XYZ(xyY)
            RGB = XYZ_to_plotting_colourspace(XYZ, colour_checker.illuminant)
            colour_swatches.append(
                ColourSwatch(np.clip(np.ravel(RGB), 0, 1), label.title()))

    if compare_swatches:
        colour_swatches = [
            swatch for pairs in zip(
                colour_swatches[0:len(colour_swatches) // 2],
                colour_swatches[len(colour_swatches) // 2:],
            ) for swatch in pairs
        ]

    background_colour = "0.1"
    width = height = 1.0
    spacing = 0.25
    columns = 6

    settings: Dict[str, Any] = {
        "axes": axes,
        "width": width,
        "height": height,
        "spacing": spacing,
        "columns": columns,
        "direction": "-y",
        "text_kwargs": {
            "size": 8
        },
        "background_colour": background_colour,
        "compare_swatches": "Stacked" if compare_swatches else None,
    }
    settings.update(kwargs)
    settings["standalone"] = False

    plot_multi_colour_swatches(colour_swatches, **settings)

    axes.text(
        0.5,
        0.005,
        (f"{', '.join(colour_checker_names)} - "
         f"{CONSTANTS_COLOUR_STYLE.colour.colourspace.name} - "
         f"Colour Rendition Chart"),
        transform=axes.transAxes,
        color=CONSTANTS_COLOUR_STYLE.colour.bright,
        ha="center",
        va="bottom",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_label,
    )

    settings.update({
        "axes": axes,
        "standalone": True,
        "title": ", ".join(colour_checker_names),
    })

    return render(**settings)
Esempio n. 20
0
def plot_the_blue_sky(cmfs='CIE 1931 2 Degree Standard Observer', **kwargs):
    """
    Plots the blue sky.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_single_sd`,
        :func:`colour.plotting.plot_multi_colour_swatches`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_the_blue_sky()  # doctest: +SKIP

    .. image:: ../_static/Plotting_Plot_The_Blue_Sky.png
        :align: center
        :alt: plot_the_blue_sky
    """

    figure = plt.figure()

    figure.subplots_adjust(hspace=COLOUR_STYLE_CONSTANTS.geometry.short / 2)

    cmfs = first_item(filter_cmfs(cmfs).values())

    ASTM_G_173_sd = ASTM_G_173_ETR.copy()
    rayleigh_sd = sd_rayleigh_scattering()
    ASTM_G_173_sd.align(rayleigh_sd.shape)

    sd = rayleigh_sd * ASTM_G_173_sd

    axes = figure.add_subplot(211)

    settings = {
        'axes': axes,
        'title': 'The Blue Sky - Synthetic Spectral Distribution',
        'y_label': u'W / m-2 / nm-1',
    }
    settings.update(kwargs)
    settings['standalone'] = False

    plot_single_sd(sd, cmfs, **settings)

    axes = figure.add_subplot(212)

    x_label = ('The sky is blue because molecules in the atmosphere '
               'scatter shorter wavelengths more than longer ones.\n'
               'The synthetic spectral distribution is computed as '
               'follows: '
               '(ASTM G-173 ETR * Standard Air Rayleigh Scattering).')

    settings = {
        'axes': axes,
        'aspect': None,
        'title': 'The Blue Sky - Colour',
        'x_label': x_label,
        'y_label': '',
        'x_ticker': False,
        'y_ticker': False,
    }
    settings.update(kwargs)
    settings['standalone'] = False

    blue_sky_color = XYZ_to_plotting_colourspace(sd_to_XYZ(sd))

    figure, axes = plot_single_colour_swatch(
        ColourSwatch('', normalise_maximum(blue_sky_color)), **settings)

    settings = {'axes': axes, 'standalone': True}
    settings.update(kwargs)

    return render(**settings)
Esempio n. 21
0
def plot_colour_quality_bars(
    specifications: Sequence[
        Union[
            ColourRendering_Specification_CQS,
            ColourRendering_Specification_CRI,
        ]
    ],
    labels: Boolean = True,
    hatching: Optional[Boolean] = None,
    hatching_repeat: Integer = 2,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the colour quality data of given illuminants or light sources colour
    quality specifications.

    Parameters
    ----------
    specifications
        Array of illuminants or light sources colour quality specifications.
    labels
        Add labels above bars.
    hatching
        Use hatching for the bars.
    hatching_repeat
        Hatching pattern repeat.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.quality.plot_colour_quality_bars`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> from colour import (SDS_ILLUMINANTS,
    ...                     SDS_LIGHT_SOURCES, SpectralShape)
    >>> illuminant = SDS_ILLUMINANTS['FL2']
    >>> light_source = SDS_LIGHT_SOURCES['Kinoton 75P']
    >>> light_source = light_source.copy().align(SpectralShape(360, 830, 1))
    >>> cqs_i = colour_quality_scale(illuminant, additional_data=True)
    >>> cqs_l = colour_quality_scale(light_source, additional_data=True)
    >>> plot_colour_quality_bars([cqs_i, cqs_l])  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Colour_Quality_Bars.png
        :align: center
        :alt: plot_colour_quality_bars
    """

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    bar_width = 0.5
    y_ticks_interval = 10
    count_s, count_Q_as = len(specifications), 0
    patterns = cycle(CONSTANTS_COLOUR_STYLE.hatch.patterns)
    if hatching is None:
        hatching = False if count_s == 1 else True

    for i, specification in enumerate(specifications):
        Q_a, Q_as, colorimetry_data = (
            specification.Q_a,
            specification.Q_as,
            specification.colorimetry_data,
        )

        count_Q_as = len(Q_as)
        RGB = [[1] * 3] + [
            np.clip(XYZ_to_plotting_colourspace(x.XYZ), 0, 1)
            for x in colorimetry_data[0]
        ]

        x = (
            as_float_array(
                i
                + np.arange(
                    0,
                    (count_Q_as + 1) * (count_s + 1),
                    (count_s + 1),
                    dtype=DEFAULT_FLOAT_DTYPE,
                )
            )
            * bar_width
        )
        y = as_float_array(
            [Q_a]
            + [
                s[1].Q_a  # type: ignore[attr-defined]
                for s in sorted(Q_as.items(), key=lambda s: s[0])
            ]
        )

        bars = axes.bar(
            x,
            np.abs(y),
            color=RGB,
            width=bar_width,
            edgecolor=CONSTANTS_COLOUR_STYLE.colour.dark,
            label=specification.name,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
        )

        hatches = (
            [next(patterns) * hatching_repeat] * (count_Q_as + 1)
            if hatching
            else list(
                np.where(y < 0, next(patterns), None)  # type: ignore[call-overload]
            )
        )

        for j, bar in enumerate(bars.patches):
            bar.set_hatch(hatches[j])

        if labels:
            label_rectangles(
                [f"{y_v:.1f}" for y_v in y],
                bars,
                rotation="horizontal" if count_s == 1 else "vertical",
                offset=(
                    0 if count_s == 1 else 3 / 100 * count_s + 65 / 1000,
                    0.025,
                ),
                text_size=-5 / 7 * count_s + 12.5,
                axes=axes,
            )

    axes.axhline(
        y=100,
        color=CONSTANTS_COLOUR_STYLE.colour.dark,
        linestyle="--",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.midground_line,
    )

    axes.set_xticks(
        (
            np.arange(
                0,
                (count_Q_as + 1) * (count_s + 1),
                (count_s + 1),
                dtype=DEFAULT_FLOAT_DTYPE,
            )
            - bar_width
        )
        * bar_width
        + (count_s * bar_width / 2)
    )
    axes.set_xticklabels(
        ["Qa"] + [f"Q{index + 1}" for index in range(0, count_Q_as, 1)]
    )
    axes.set_yticks(range(0, 100 + y_ticks_interval, y_ticks_interval))

    aspect = 1 / (120 / (bar_width + len(Q_as) + bar_width * 2))
    bounding_box = (
        -bar_width,
        ((count_Q_as + 1) * (count_s + 1)) / 2 - bar_width,
        0,
        120,
    )

    settings = {
        "axes": axes,
        "aspect": aspect,
        "bounding_box": bounding_box,
        "legend": hatching,
        "title": "Colour Quality",
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 22
0
def plot_multi_colour_checkers(colour_checkers=None, **kwargs):
    """
    Plots and compares given colour checkers.

    Parameters
    ----------
    colour_checkers : array_like, optional
        Color checker names, must be less than or equal to 2 names.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_multi_colour_swatches`,
        :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_multi_colour_checkers(['ColorChecker 1976', 'ColorChecker 2005'])
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Multi_Colour_Checkers.png
        :align: center
        :alt: plot_multi_colour_checkers
    """

    if colour_checkers is None:
        colour_checkers = ['ColorChecker 1976', 'ColorChecker 2005']
    else:
        assert len(colour_checkers) <= 2, (
            'Only two colour checkers can be compared at a time!')

    colour_checkers = filter_colour_checkers(colour_checkers).values()

    _figure, axes = artist(**kwargs)

    compare_swatches = len(colour_checkers) == 2

    colour_swatches = []
    colour_checker_names = []
    for colour_checker in colour_checkers:
        colour_checker_names.append(colour_checker.name)
        for label, xyY in colour_checker.data.items():
            XYZ = xyY_to_XYZ(xyY)
            RGB = XYZ_to_plotting_colourspace(XYZ, colour_checker.illuminant)
            colour_swatches.append(
                ColourSwatch(label.title(), np.clip(np.ravel(RGB), 0, 1)))

    if compare_swatches:
        colour_swatches = [
            swatch
            for pairs in zip(colour_swatches[0:len(colour_swatches) // 2],
                             colour_swatches[len(colour_swatches) // 2:])
            for swatch in pairs
        ]

    background_colour = '0.1'
    width = height = 1.0
    spacing = 0.25
    columns = 6

    settings = {
        'axes': axes,
        'width': width,
        'height': height,
        'spacing': spacing,
        'columns': columns,
        'text_parameters': {
            'size': 8
        },
        'background_colour': background_colour,
        'compare_swatches': 'Stacked' if compare_swatches else None,
    }
    settings.update(kwargs)
    settings['standalone'] = False

    plot_multi_colour_swatches(colour_swatches, **settings)

    axes.text(0.5,
              0.005,
              '{0} - {1} - Colour Rendition Chart'.format(
                  ', '.join(colour_checker_names),
                  COLOUR_STYLE_CONSTANTS.colour.colourspace.name),
              transform=axes.transAxes,
              color=COLOUR_STYLE_CONSTANTS.colour.bright,
              ha='center',
              va='bottom')

    settings.update({
        'axes': axes,
        'standalone': True,
        'title': ', '.join(colour_checker_names),
    })

    return render(**settings)
Esempio n. 23
0
def plot_hull_section_colours(
    hull: trimesh.Trimesh,  # type: ignore[name-defined]  # noqa
    model: Union[Literal["CAM02LCD", "CAM02SCD", "CAM02UCS", "CAM16LCD",
                         "CAM16SCD", "CAM16UCS", "CIE XYZ", "CIE xyY",
                         "CIE Lab", "CIE Luv", "CIE UCS", "CIE UVW", "DIN99",
                         "Hunter Lab", "Hunter Rdab", "ICaCb", "ICtCp", "IPT",
                         "IgPgTg", "Jzazbz", "OSA UCS", "Oklab", "hdr-CIELAB",
                         "hdr-IPT", ], str, ] = "CIE xyY",
    axis: Union[Literal["+z", "+x", "+y"], str] = "+z",
    origin: Floating = 0.5,
    normalise: Boolean = True,
    section_colours: Optional[Union[ArrayLike, str]] = None,
    section_opacity: Floating = 1,
    convert_kwargs: Optional[Dict] = None,
    samples: Integer = 256,
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the section colours of given *trimesh* hull along given axis and
    origin.

    Parameters
    ----------
    hull
        *Trimesh* hull.
    model
        Colourspace model, see :attr:`colour.COLOURSPACE_MODELS` attribute for
        the list of supported colourspace models.
    axis
        Axis the hull section will be normal to.
    origin
        Coordinate along ``axis`` at which to plot the hull section.
    normalise
        Whether to normalise ``axis`` to the extent of the hull along it.
    section_colours
        Colours of the hull section, if ``section_colours`` is set to *RGB*,
        the colours will be computed according to the corresponding
        coordinates.
    section_opacity
        Opacity of the hull section colours.
    convert_kwargs
        Keyword arguments for the :func:`colour.convert` definition.
    samples
        Samples count on one axis when computing the hull section colours.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> from colour.models import RGB_COLOURSPACE_sRGB
    >>> from colour.utilities import is_trimesh_installed
    >>> vertices, faces, _outline = primitive_cube(1, 1, 1, 64, 64, 64)
    >>> XYZ_vertices = RGB_to_XYZ(
    ...     vertices['position'] + 0.5,
    ...     RGB_COLOURSPACE_sRGB.whitepoint,
    ...     RGB_COLOURSPACE_sRGB.whitepoint,
    ...     RGB_COLOURSPACE_sRGB.matrix_RGB_to_XYZ,
    ... )
    >>> if is_trimesh_installed:
    ...     import trimesh
    ...     hull = trimesh.Trimesh(XYZ_vertices, faces, process=False)
    ...     plot_hull_section_colours(hull, section_colours='RGB')
    ...     # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Hull_Section_Colours.png
        :align: center
        :alt: plot_hull_section_colours
    """

    axis = validate_method(
        axis,
        ["+z", "+x", "+y"],
        '"{0}" axis is invalid, it must be one of {1}!',
    )

    hull = hull.copy()

    settings: Dict[str, Any] = {"uniform": True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    section_colours = cast(
        ArrayLike,
        optional(section_colours,
                 HEX_to_RGB(CONSTANTS_COLOUR_STYLE.colour.average)),
    )

    convert_kwargs = optional(convert_kwargs, {})

    # Luminance / Lightness reordered along "z" axis.
    with suppress_warnings(python_warnings=True):
        ijk_vertices = colourspace_model_axis_reorder(
            convert(hull.vertices, "CIE XYZ", model, **convert_kwargs), model)
        ijk_vertices = np.nan_to_num(ijk_vertices)
        ijk_vertices *= COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[
            model]

    hull.vertices = ijk_vertices

    if axis == "+x":
        index_origin = 0
    elif axis == "+y":
        index_origin = 1
    elif axis == "+z":
        index_origin = 2
    plane = MAPPING_AXIS_TO_PLANE[axis]

    section = hull_section(hull, axis, origin, normalise)

    padding = 0.1 * np.mean(
        COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[model])
    min_x = np.min(ijk_vertices[..., plane[0]]) - padding
    max_x = np.max(ijk_vertices[..., plane[0]]) + padding
    min_y = np.min(ijk_vertices[..., plane[1]]) - padding
    max_y = np.max(ijk_vertices[..., plane[1]]) + padding
    extent = (min_x, max_x, min_y, max_y)

    use_RGB_section_colours = str(section_colours).upper() == "RGB"
    if use_RGB_section_colours:
        ii, jj = np.meshgrid(
            np.linspace(min_x, max_x, samples),
            np.linspace(max_y, min_y, samples),
        )
        ij = tstack([ii, jj])
        ijk_section = full((samples, samples, 3),
                           np.median(section[..., index_origin]))
        ijk_section[..., plane] = ij
        ijk_section /= COLOURSPACE_MODELS_DOMAIN_RANGE_SCALE_1_TO_REFERENCE[
            model]
        XYZ_section = convert(
            colourspace_model_axis_reorder(ijk_section, model, "Inverse"),
            model,
            "CIE XYZ",
            **convert_kwargs,
        )
        RGB_section = XYZ_to_plotting_colourspace(XYZ_section)
    else:
        section_colours = np.hstack([section_colours, section_opacity])

    facecolor = "none" if use_RGB_section_colours else section_colours
    polygon = Polygon(
        section[..., plane],
        facecolor=facecolor,
        edgecolor="none",
        zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
    )
    axes.add_patch(polygon)
    if use_RGB_section_colours:
        image = axes.imshow(
            np.clip(RGB_section, 0, 1),
            interpolation="bilinear",
            extent=extent,
            clip_path=None,
            alpha=section_opacity,
            zorder=CONSTANTS_COLOUR_STYLE.zorder.background_polygon,
        )
        image.set_clip_path(polygon)

    settings = {
        "axes": axes,
        "bounding_box": extent,
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 24
0
def plot_the_blue_sky(
    cmfs: Union[MultiSpectralDistributions, str, Sequence[Union[
        MultiSpectralDistributions,
        str]], ] = "CIE 1931 2 Degree Standard Observer",
    **kwargs: Any,
) -> Tuple[plt.Figure, plt.Axes]:
    """
    Plot the blue sky.

    Parameters
    ----------
    cmfs
        Standard observer colour matching functions used for computing the
        spectrum domain and colours. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.

    Other Parameters
    ----------------
    kwargs
        {:func:`colour.plotting.artist`,
        :func:`colour.plotting.plot_single_sd`,
        :func:`colour.plotting.plot_multi_colour_swatches`,
        :func:`colour.plotting.render`},
        See the documentation of the previously listed definitions.

    Returns
    -------
    :class:`tuple`
        Current figure and axes.

    Examples
    --------
    >>> plot_the_blue_sky()  # doctest: +ELLIPSIS
    (<Figure size ... with 2 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_The_Blue_Sky.png
        :align: center
        :alt: plot_the_blue_sky
    """

    figure = plt.figure()

    figure.subplots_adjust(hspace=CONSTANTS_COLOUR_STYLE.geometry.short / 2)

    cmfs = cast(MultiSpectralDistributions,
                first_item(filter_cmfs(cmfs).values()))

    ASTMG173_sd = cast(SpectralDistribution, SD_ASTMG173_ETR.copy())
    rayleigh_sd = sd_rayleigh_scattering()
    ASTMG173_sd.align(rayleigh_sd.shape)

    sd = rayleigh_sd * ASTMG173_sd

    axes = figure.add_subplot(211)

    settings: Dict[str, Any] = {
        "axes": axes,
        "title": "The Blue Sky - Synthetic Spectral Distribution",
        "y_label": "W / m-2 / nm-1",
    }
    settings.update(kwargs)
    settings["standalone"] = False

    plot_single_sd(sd, cmfs, **settings)

    axes = figure.add_subplot(212)

    x_label = ("The sky is blue because molecules in the atmosphere "
               "scatter shorter wavelengths more than longer ones.\n"
               "The synthetic spectral distribution is computed as "
               "follows: "
               "(ASTM G-173 ETR * Standard Air Rayleigh Scattering).")

    settings = {
        "axes": axes,
        "aspect": None,
        "title": "The Blue Sky - Colour",
        "x_label": x_label,
        "y_label": "",
        "x_ticker": False,
        "y_ticker": False,
    }
    settings.update(kwargs)
    settings["standalone"] = False

    blue_sky_color = XYZ_to_plotting_colourspace(
        sd_to_XYZ(cast(SpectralDistribution, sd)))

    figure, axes = plot_single_colour_swatch(
        ColourSwatch(normalise_maximum(blue_sky_color)), **settings)

    settings = {"axes": axes, "standalone": True}
    settings.update(kwargs)

    return render(**settings)
Esempio n. 25
0
def plot_single_sd(sd,
                   cmfs='CIE 1931 2 Degree Standard Observer',
                   out_of_gamut_clipping=True,
                   modulate_colours_with_sd_amplitude=False,
                   equalize_sd_amplitude=False,
                   **kwargs):
    """
    Plots given spectral distribution.

    Parameters
    ----------
    sd : SpectralDistribution
        Spectral distribution to plot.
    out_of_gamut_clipping : bool, optional
        Whether to clip out of gamut colours otherwise, the colours will be
        offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother.
    modulate_colours_with_sd_amplitude : bool, optional
        Whether to modulate the colours with the spectral distribution
        amplitude.
    equalize_sd_amplitude : bool, optional
        Whether to equalize the spectral distribution amplitude.
        Equalization occurs after the colours modulation thus setting both
        arguments to *True* will generate a spectrum strip where each
        wavelength colour is modulated by the spectral distribution amplitude.
        The usual 5% margin above the spectral distribution is also omitted.
    cmfs : unicode
        Standard observer colour matching functions used for spectrum creation.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    References
    ----------
    :cite:`Spiker2015a`

    Examples
    --------
    >>> from colour import SpectralDistribution
    >>> data = {
    ...     500: 0.0651,
    ...     520: 0.0705,
    ...     540: 0.0772,
    ...     560: 0.0870,
    ...     580: 0.1128,
    ...     600: 0.1360
    ... }
    >>> sd = SpectralDistribution(data, name='Custom')
    >>> plot_single_sd(sd)  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Single_SD.png
        :align: center
        :alt: plot_single_sd
    """

    _figure, axes = artist(**kwargs)

    cmfs = first_item(filter_cmfs(cmfs).values())

    sd = sd.copy()
    sd.interpolator = LinearInterpolator
    wavelengths = cmfs.wavelengths[np.logical_and(
        cmfs.wavelengths >= max(min(cmfs.wavelengths), min(sd.wavelengths)),
        cmfs.wavelengths <= min(max(cmfs.wavelengths), max(sd.wavelengths)),
    )]
    values = sd[wavelengths]

    colours = XYZ_to_plotting_colourspace(
        wavelength_to_XYZ(wavelengths, cmfs),
        ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_cctf_encoding=False)

    if not out_of_gamut_clipping:
        colours += np.abs(np.min(colours))

    colours = normalise_maximum(colours)

    if modulate_colours_with_sd_amplitude:
        colours *= (values / np.max(values))[..., np.newaxis]

    colours = COLOUR_STYLE_CONSTANTS.colour.colourspace.cctf_encoding(colours)

    if equalize_sd_amplitude:
        values = np.ones(values.shape)

    margin = 0 if equalize_sd_amplitude else 0.05

    x_min, x_max = min(wavelengths), max(wavelengths)
    y_min, y_max = 0, max(values) + max(values) * margin

    polygon = Polygon(np.vstack([
        (x_min, 0),
        tstack([wavelengths, values]),
        (x_max, 0),
    ]),
                      facecolor='none',
                      edgecolor='none')
    axes.add_patch(polygon)

    padding = 0.1
    axes.bar(x=wavelengths - padding,
             height=max(values),
             width=1 + padding,
             color=colours,
             align='edge',
             clip_path=polygon)

    axes.plot(wavelengths, values, color=COLOUR_STYLE_CONSTANTS.colour.dark)

    settings = {
        'axes': axes,
        'bounding_box': (x_min, x_max, y_min, y_max),
        'title': '{0} - {1}'.format(sd.strict_name, cmfs.strict_name),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Distribution',
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 26
0
def plot_multi_sds(sds, plot_kwargs=None, **kwargs):
    """
    Plots given spectral distributions.

    Parameters
    ----------
    sds : array_like or MultiSpectralDistributions
        Spectral distributions or multi-spectral distributions to
        plot. `sds` can be a single
        :class:`colour.MultiSpectralDistributions` class instance, a list
        of :class:`colour.MultiSpectralDistributions` class instances or a
        list of :class:`colour.SpectralDistribution` class instances.
    plot_kwargs : dict or array_like, optional
        Keyword arguments for the :func:`plt.plot` definition, used to control
        the style of the plotted spectral distributions. ``plot_kwargs`` can be
        either a single dictionary applied to all the plotted spectral
        distributions with same settings or a sequence of dictionaries with
        different settings for each plotted spectral distributions.
        The following special keyword arguments can also be used:

        -   *illuminant* : unicode or :class:`colour.SpectralDistribution`, the
            illuminant used to compute the spectral distributions colours. The
            default is the illuminant associated with the whitepoint of the
            default plotting colourspace. ``illuminant`` can be of any type or
            form supported by the :func:`colour.plotting.filter_cmfs`
            definition.
        -   *cmfs* : unicode, the standard observer colour matching functions
            used for computing the spectral distributions colours. ``cmfs`` can
            be of any type or form supported by the
            :func:`colour.plotting.filter_cmfs` definition.
        -   *normalise_sd_colours* : bool, whether to normalise the computed
            spectral distributions colours. The default is *True*.
        -   *use_sd_colours* : bool, whether to use the computed spectral
            distributions colours under the plotting colourspace illuminant.
            Alternatively, it is possible to use the :func:`plt.plot`
            definition ``color`` argument with pre-computed values. The default
            is *True*.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> from colour import SpectralDistribution
    >>> data_1 = {
    ...     500: 0.004900,
    ...     510: 0.009300,
    ...     520: 0.063270,
    ...     530: 0.165500,
    ...     540: 0.290400,
    ...     550: 0.433450,
    ...     560: 0.594500
    ... }
    >>> data_2 = {
    ...     500: 0.323000,
    ...     510: 0.503000,
    ...     520: 0.710000,
    ...     530: 0.862000,
    ...     540: 0.954000,
    ...     550: 0.994950,
    ...     560: 0.995000
    ... }
    >>> sd_1 = SpectralDistribution(data_1, name='Custom 1')
    >>> sd_2 = SpectralDistribution(data_2, name='Custom 2')
    >>> plot_kwargs = [
    ...     {'use_sd_colours': True},
    ...     {'use_sd_colours': True, 'linestyle': 'dashed'},
    ... ]
    >>> plot_multi_sds([sd_1, sd_2], plot_kwargs=plot_kwargs)
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Multi_SDS.png
        :align: center
        :alt: plot_multi_sds
    """

    handle_arguments_deprecation(
        {'ArgumentRemoved': ['normalise_sd_colours', 'use_sds_colours']},
        **kwargs)

    _figure, axes = artist(**kwargs)

    sds = sds_and_msds_to_sds(sds)

    plot_settings_collection = [{
        'label':
        '{0}'.format(sd.strict_name),
        'cmfs':
        'CIE 1931 2 Degree Standard Observer',
        'illuminant':
        SDS_ILLUMINANTS[
            CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint_name],
        'use_sd_colours':
        False,
        'normalise_sd_colours':
        False,
    } for sd in sds]

    if plot_kwargs is not None:
        update_settings_collection(plot_settings_collection, plot_kwargs,
                                   len(sds))

    x_limit_min, x_limit_max, y_limit_min, y_limit_max = [], [], [], []
    for i, sd in enumerate(sds):
        plot_settings = plot_settings_collection[i]

        cmfs = first_item(filter_cmfs(plot_settings.pop('cmfs')).values())
        illuminant = first_item(
            filter_illuminants(plot_settings.pop('illuminant')).values())
        normalise_sd_colours = plot_settings.pop('normalise_sd_colours')
        use_sd_colours = plot_settings.pop('use_sd_colours')

        wavelengths, values = sd.wavelengths, sd.values

        shape = sd.shape
        x_limit_min.append(shape.start)
        x_limit_max.append(shape.end)
        y_limit_min.append(min(values))
        y_limit_max.append(max(values))

        if use_sd_colours:
            with domain_range_scale('1'):
                XYZ = sd_to_XYZ(sd, cmfs, illuminant)

            if normalise_sd_colours:
                XYZ /= XYZ[..., 1]

            plot_settings['color'] = np.clip(XYZ_to_plotting_colourspace(XYZ),
                                             0, 1)

        axes.plot(wavelengths, values, **plot_settings)

    bounding_box = (min(x_limit_min), max(x_limit_max), min(y_limit_min),
                    max(y_limit_max) + max(y_limit_max) * 0.05)
    settings = {
        'axes': axes,
        'bounding_box': bounding_box,
        'legend': True,
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Distribution',
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 27
0
def plot_blackbody_colours(shape=SpectralShape(150, 12500, 50),
                           cmfs='CIE 1931 2 Degree Standard Observer',
                           **kwargs):
    """
    Plots blackbody colours.

    Parameters
    ----------
    shape : SpectralShape, optional
        Spectral shape to use as plot boundaries.
    cmfs : unicode, optional
        Standard observer colour matching functions.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_blackbody_colours(SpectralShape(150, 12500, 50))
    ... # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, \
<matplotlib.axes._subplots.AxesSubplot object at 0x...>)

    .. image:: ../_static/Plotting_Plot_Blackbody_Colours.png
        :align: center
        :alt: plot_blackbody_colours
    """

    _figure, axes = artist(**kwargs)

    cmfs = first_item(filter_cmfs(cmfs).values())

    colours = []
    temperatures = []

    for temperature in shape:
        sd = sd_blackbody(temperature, cmfs.shape)

        with domain_range_scale('1'):
            XYZ = sd_to_XYZ(sd, cmfs)

        RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ))

        colours.append(RGB)
        temperatures.append(temperature)

    x_min, x_max = min(temperatures), max(temperatures)
    y_min, y_max = 0, 1

    padding = 0.1
    axes.bar(x=np.array(temperatures) - padding,
             height=1,
             width=shape.interval + (padding * shape.interval),
             color=colours,
             align='edge')

    settings = {
        'axes': axes,
        'bounding_box': (x_min, x_max, y_min, y_max),
        'title': 'Blackbody Colours',
        'x_label': 'Temperature K',
        'y_label': None,
    }
    settings.update(kwargs)

    return render(**settings)
Esempio n. 28
0
def plot_chromaticity_diagram_colours(
        samples=256,
        diagram_opacity=1.0,
        diagram_clipping_path=None,
        cmfs='CIE 1931 2 Degree Standard Observer',
        method='CIE 1931',
        **kwargs):
    """
    Plots the *Chromaticity Diagram* colours according to given method.

    Parameters
    ----------
    samples : numeric, optional
        Samples count on one axis.
    diagram_opacity : numeric, optional
        Opacity of the *Chromaticity Diagram* colours.
    diagram_clipping_path : array_like, optional
        Path of points used to clip the *Chromaticity Diagram* colours.
    cmfs : unicode or XYZ_ColourMatchingFunctions, optional
        Standard observer colour matching functions used for computing the
        spectral locus boundaries. ``cmfs`` can be of any type or form
        supported by the :func:`colour.plotting.filter_cmfs` definition.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_chromaticity_diagram_colours()  # doctest: +ELLIPSIS
    (<Figure size ... with 1 Axes>, <...AxesSubplot...>)

    .. image:: ../_static/Plotting_Plot_Chromaticity_Diagram_Colours.png
        :align: center
        :alt: plot_chromaticity_diagram_colours
    """

    settings = {'uniform': True}
    settings.update(kwargs)

    _figure, axes = artist(**settings)

    method = method.upper()

    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint

    ii, jj = np.meshgrid(np.linspace(0, 1, samples),
                         np.linspace(1, 0, samples))
    ij = tstack([ii, jj])

    # NOTE: Various values in the grid have potential to generate
    # zero-divisions, they could be avoided by perturbing the grid, e.g. adding
    # a small epsilon. It was decided instead to disable warnings.
    with suppress_warnings(python_warnings=True):
        if method == 'CIE 1931':
            XYZ = xy_to_XYZ(ij)
            spectral_locus = XYZ_to_xy(cmfs.values, illuminant)
        elif method == 'CIE 1960 UCS':
            XYZ = xy_to_XYZ(UCS_uv_to_xy(ij))
            spectral_locus = UCS_to_uv(XYZ_to_UCS(cmfs.values))
        elif method == 'CIE 1976 UCS':
            XYZ = xy_to_XYZ(Luv_uv_to_xy(ij))
            spectral_locus = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant),
                                       illuminant)
        else:
            raise ValueError(
                'Invalid method: "{0}", must be one of '
                '[\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\']'.format(
                    method))

    RGB = normalise_maximum(XYZ_to_plotting_colourspace(XYZ, illuminant),
                            axis=-1)

    polygon = Polygon(spectral_locus if diagram_clipping_path is None else
                      diagram_clipping_path,
                      facecolor='none',
                      edgecolor='none')
    axes.add_patch(polygon)
    # Preventing bounding box related issues as per
    # https://github.com/matplotlib/matplotlib/issues/10529
    image = axes.imshow(RGB,
                        interpolation='bilinear',
                        extent=(0, 1, 0, 1),
                        clip_path=None,
                        alpha=diagram_opacity)
    image.set_clip_path(polygon)

    settings = {'axes': axes}
    settings.update(kwargs)

    return render(**kwargs)
Esempio n. 29
0
def plot_spectral_locus(cmfs='CIE 1931 2 Degree Standard Observer',
                        spectral_locus_colours=None,
                        spectral_locus_labels=None,
                        method='CIE 1931',
                        **kwargs):
    """
    Plots the *Spectral Locus* according to given method.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions defining the
        *Spectral Locus*.
    spectral_locus_colours : array_like or unicode, optional
        *Spectral Locus* colours, if ``spectral_locus_colours`` is set to
        *RGB*, the colours will be computed according to the corresponding
        chromaticity coordinates.
    spectral_locus_labels : array_like, optional
        Array of wavelength labels used to customise which labels will be drawn
        around the spectral locus. Passing an empty array will result in no
        wavelength labels being drawn.
    method : unicode, optional
        **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**,
        *Chromaticity Diagram* method.

    Other Parameters
    ----------------
    \\**kwargs : dict, optional
        {:func:`colour.plotting.artist`, :func:`colour.plotting.render`},
        Please refer to the documentation of the previously listed definitions.

    Returns
    -------
    tuple
        Current figure and axes.

    Examples
    --------
    >>> plot_spectral_locus(spectral_locus_colours='RGB')  # doctest: +SKIP

    .. image:: ../_static/Plotting_Plot_Spectral_Locus.png
        :align: center
        :alt: plot_spectral_locus
    """

    if spectral_locus_colours is None:
        spectral_locus_colours = COLOUR_STYLE_CONSTANTS.colour.dark

    settings = {'uniform': True}
    settings.update(kwargs)

    figure, axes = artist(**settings)

    method = method.upper()

    cmfs = first_item(filter_cmfs(cmfs).values())

    illuminant = COLOUR_STYLE_CONSTANTS.colour.colourspace.whitepoint

    wavelengths = cmfs.wavelengths
    equal_energy = np.array([1 / 3] * 2)

    if method == 'CIE 1931':
        ij = XYZ_to_xy(cmfs.values, illuminant)
        labels = ((390, 460, 470, 480, 490, 500, 510, 520, 540, 560, 580, 600,
                   620, 700)
                  if spectral_locus_labels is None else spectral_locus_labels)
    elif method == 'CIE 1960 UCS':
        ij = UCS_to_uv(XYZ_to_UCS(cmfs.values))
        labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540,
                   550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680)
                  if spectral_locus_labels is None else spectral_locus_labels)
    elif method == 'CIE 1976 UCS':
        ij = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant), illuminant)
        labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540,
                   550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680)
                  if spectral_locus_labels is None else spectral_locus_labels)
    else:
        raise ValueError(
            'Invalid method: "{0}", must be one of '
            '{\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\'}'.format(
                method))

    pl_ij = tstack([
        np.linspace(ij[0][0], ij[-1][0], 20),
        np.linspace(ij[0][1], ij[-1][1], 20)
    ]).reshape(-1, 1, 2)
    sl_ij = np.copy(ij).reshape(-1, 1, 2)

    if spectral_locus_colours.upper() == 'RGB':
        spectral_locus_colours = normalise_maximum(
            XYZ_to_plotting_colourspace(cmfs.values), axis=-1)

        if method == 'CIE 1931':
            XYZ = xy_to_XYZ(pl_ij)
        elif method == 'CIE 1960 UCS':
            XYZ = xy_to_XYZ(UCS_uv_to_xy(pl_ij))
        elif method == 'CIE 1976 UCS':
            XYZ = xy_to_XYZ(Luv_uv_to_xy(pl_ij))
        purple_line_colours = normalise_maximum(
            XYZ_to_plotting_colourspace(XYZ.reshape(-1, 3)), axis=-1)
    else:
        purple_line_colours = spectral_locus_colours

    for slp_ij, slp_colours in ((pl_ij, purple_line_colours),
                                (sl_ij, spectral_locus_colours)):
        line_collection = LineCollection(
            np.concatenate([slp_ij[:-1], slp_ij[1:]], axis=1),
            colors=slp_colours)
        axes.add_collection(line_collection)

    wl_ij = dict(tuple(zip(wavelengths, ij)))
    for label in labels:
        i, j = wl_ij[label]

        index = bisect.bisect(wavelengths, label)
        left = wavelengths[index - 1] if index >= 0 else wavelengths[index]
        right = (wavelengths[index]
                 if index < len(wavelengths) else wavelengths[-1])

        dx = wl_ij[right][0] - wl_ij[left][0]
        dy = wl_ij[right][1] - wl_ij[left][1]

        ij = np.array([i, j])
        direction = np.array([-dy, dx])

        normal = (np.array([-dy, dx]) if np.dot(
            normalise_vector(ij - equal_energy), normalise_vector(direction)) >
                  0 else np.array([dy, -dx]))
        normal = normalise_vector(normal) / 30

        label_colour = (spectral_locus_colours
                        if is_string(spectral_locus_colours) else
                        spectral_locus_colours[index])
        axes.plot(
            (i, i + normal[0] * 0.75), (j, j + normal[1] * 0.75),
            color=label_colour)

        axes.plot(i, j, 'o', color=label_colour)

        axes.text(
            i + normal[0],
            j + normal[1],
            label,
            clip_on=True,
            ha='left' if normal[0] >= 0 else 'right',
            va='center',
            fontdict={'size': 'small'})

    settings = {'axes': axes}
    settings.update(kwargs)

    return render(**kwargs)
Esempio n. 30
0
def plot_as_slit_rainbow(ax=None,
                         wavelength=None,
                         flux=None,
                         cmfs="CIE 1931 2 Degree Standard Observer",
                         **kwargs):
    """
    (This is still *real* blarg-y*.)
    Plot a spectrum as a light source would be seen through
    a slit spectrometer, with vertical bands of light that
    are brighter or fainter depending on the intensity
    of the spectrum at that particular wavelength.

    Parameters
    ----------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow should be drawn.

    wavelength : array
        The wavelengths to include in the spectrum.
        In units of nm, but not as astropy units.

    flux : array
        The fluxes to include in the spectrum.
        In units of whatever, but not as astropy units.

    cmfs : string
        The color matching function(s?) to use.

    vector : bool


    Returns
    -------
    ax : matplotlib.axes._subplots.AxesSubplot
        The ax into which the rainbow was drawn.
    """

    # make sure our plotting ax is defined
    if ax is None:
        ax = plt.gca()

    # make sure we have a grid of wavelengths defined
    if wavelength is None:
        # create a grid of wavelengths (at which CMFss are useful)
        wavelength = CMFs.wavelengths

    # create y values that will be plotted (these could be spectrum)
    if flux is None:
        flux = np.ones_like(wavelength)

    # pull out only the values that *can* be converted to colors
    ok = (wavelength >= np.min(CMFs.wavelengths)) & (wavelength <= np.max(
        CMFs.wavelengths))
    w, f = wavelength[ok], flux[ok]

    # get the XYZ for the wavelengths
    XYZ = wavelength_to_XYZ(w)

    # create colors at those wavelengths
    colours = XYZ_to_plotting_colourspace(XYZ)

    # normalize the colors to their maximum?
    # colours = CONSTANTS_COLOUR_STYLE.colour.colourspace.cctf_encoding(
    #    normalise_maximum(colours))

    # normalize the brightness by the flux
    colours *= f[:, np.newaxis]

    # normalize to the brightest line
    colours = np.maximum(0, colours / np.max(colours))

    # draw as an RGB color image with imshow
    ax.imshow(
        colours[np.newaxis, :, :],
        aspect="auto",
        extent=[np.min(w), np.max(w), 0, 1],
        interpolation="nearest",
    )

    return ax