Esempio n. 1
0
def save_eval_file(opt, stats, eval_type="losses", split="dev", ext="pickle"):
    if cfg.test_save:
        name = "{}/{}.{}".format(
            utils.make_name(opt,
                            prefix="garbage/{}/".format(eval_type),
                            is_dir=True,
                            eval_=True), split, ext)
    else:
        name = "{}/{}.{}".format(
            utils.make_name(opt,
                            prefix="results/{}/".format(eval_type),
                            is_dir=True,
                            eval_=True), split, ext)
    print("Saving {} {} to {}".format(split, eval_type, name))

    if ext == "pickle":
        with open(name, "wb") as f:
            pickle.dump(stats, f)
    elif ext == "txt":
        with open(name, "w") as f:
            f.write(stats)
    elif ext == "json":
        with open(name, "w") as f:
            json.dump(stats, f)
    else:
        raise
Esempio n. 2
0
 def set_logger(self):
     if cfg.toy:
         self.logger = SummaryWriter(
             utils.make_name(self.opt,
                             prefix="garbage/logs/",
                             eval_=True,
                             do_epoch=False))
     else:
         self.logger = SummaryWriter(
             utils.make_name(self.opt,
                             prefix="logs/",
                             eval_=True,
                             do_epoch=False))
     print("Logging Tensorboard Files at: {}".format(self.logger.log_dir))
Esempio n. 3
0
def save_step(model, vocab, optimizer, opt, length, lrs):
    if cfg.test_save:
        name = "{}.pickle".format(
            utils.make_name(opt,
                            prefix="garbage/models/",
                            is_dir=False,
                            eval_=True))
    else:
        name = "{}.pickle".format(
            utils.make_name(opt, prefix="models/", is_dir=False, eval_=True))
    save_checkpoint(
        {
            "epoch": length,
            "state_dict": model.state_dict(),
            "optimizer": optimizer.state_dict(),
            "opt": opt,
            "vocab": vocab,
            "epoch_learning_rates": lrs
        }, name)